Python 双目相机标定

时间: 2023-08-03 16:03:13 浏览: 70
双目相机标定是将左右两个摄像机的内外参数进行计算,以便于进行双目视觉测量、深度计算等应用。Python可以使用OpenCV库进行双目相机标定,具体步骤如下: 1.采集一组左右相机的棋盘格图像,要求左右相机的摄像机位置和方向不变,左右相机的分辨率相同。 2.对每一幅棋盘图像进行角点检测,获取左右相机的角点坐标。 3.对角点进行匹配,计算左右相机的相对位姿,并进行立体校正。 4.使用标定板的已知物理尺寸,对左右摄像机的内部参数进行标定,并计算出左右摄像机的外部参数。 5.计算得到左右相机的内外参数后,可以进行双目视觉测量、深度计算等应用。 Python代码实现可以参考OpenCV官网提供的教程,具体步骤详见链接:https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
相关问题

python双目相机标定

Python双目相机标定是一种使用Python编程语言实现的双目相机标定方法。在该方法中,使用了OpenCV和NumPy等库来进行图像处理和计算。具体步骤如下: 1. 导入所需库,包括OpenCV、NumPy和os等文件操作库。 2. 编写函数来进行相机标定。相机标定是通过采集一系列图像,利用这些图像中的特征点进行计算,从而得到相机的内参矩阵、畸变系数和外参矩阵等参数。 另外需要注意的是,虽然Python和Matlab以及OpenCV C语言版本的结果可能会有一些差异,但主要部分大致相同,比如焦距和旋转矩阵对角线值等。这可能导致计算三维坐标时的不统一性。因此,在进行双目相机标定时,需要考虑这些因素并找到相应的解决办法。

python 双目相机标定并获取点云图像

要进行双目相机标定并获取点云图像,需要先准备好相机标定板,它是一张黑白相间的方格纸,可以在网上下载并打印。然后按照以下步骤进行操作: 1. 拍摄相机标定板的多张照片,保证相机位置和角度不变,只改变拍照时的标定板位置和角度。照片越多越好,最好超过10张。 2. 使用 OpenCV 库中的 stereoCalibrate 函数,对双目相机进行标定。这个函数会输出相机内部参数、旋转矩阵和平移向量等参数。 3. 使用 OpenCV 库中的 stereoRectify 函数,对左右相机进行校正,使它们的光轴平行。这个函数会输出左右相机的校正变换矩阵。 4. 使用 OpenCV 库中的 undistort 函数,对左右相机的照片进行畸变矫正。 5. 使用 OpenCV 库中的 stereoMatch 函数,对左右相机的照片进行立体匹配,得到每个像素点的视差(disparity)。 6. 使用 OpenCV 库中的 reprojectImageTo3D 函数,将视差图像转换为三维坐标。 7. 使用点云库(如 PCL)将三维坐标转换为点云图像。 8. 可以使用可视化工具(如 CloudCompare)查看点云图像。 需要注意的是,双目相机标定和点云图像获取的过程比较复杂,需要一定的图像处理和计算机视觉基础。建议在进行这些操作前先学习相关知识。 以下是一个简单的 Python 代码示例,展示如何进行双目相机标定并获取点云图像: ``` import cv2 import numpy as np import open3d as o3d # 准备相机标定板 pattern_size = (9, 6) # 标定板上的内角点数量 square_size = 0.02 # 标定板上每个方格的大小,单位为米 objp = np.zeros((pattern_size[0] * pattern_size[1], 3), np.float32) objp[:, :2] = np.mgrid[0:pattern_size[0], 0:pattern_size[1]].T.reshape(-1, 2) * square_size # 拍摄标定板的多张照片并进行标定 image_paths_left = ['left1.jpg', 'left2.jpg', 'left3.jpg', ...] image_paths_right = ['right1.jpg', 'right2.jpg', 'right3.jpg', ...] objpoints = [] # 存储标定板上的三维坐标 imgpoints_left = [] # 存储左相机照片中的二维像素坐标 imgpoints_right = [] # 存储右相机照片中的二维像素坐标 for image_path_left, image_path_right in zip(image_paths_left, image_paths_right): img_left = cv2.imread(image_path_left) img_right = cv2.imread(image_path_right) gray_left = cv2.cvtColor(img_left, cv2.COLOR_BGR2GRAY) gray_right = cv2.cvtColor(img_right, cv2.COLOR_BGR2GRAY) ret_left, corners_left = cv2.findChessboardCorners(gray_left, pattern_size, None) ret_right, corners_right = cv2.findChessboardCorners(gray_right, pattern_size, None) if ret_left and ret_right: objpoints.append(objp) imgpoints_left.append(corners_left) imgpoints_right.append(corners_right) ret, mtx_left, dist_left, mtx_right, dist_right, R, T, E, F = cv2.stereoCalibrate(objpoints, imgpoints_left, imgpoints_right, gray_left.shape[::-1]) # 校正和矫正 R_left, R_right, P_left, P_right, Q, roi_left, roi_right = cv2.stereoRectify(mtx_left, dist_left, mtx_right, dist_right, gray_left.shape[::-1], R, T, alpha=0) mapx_left, mapy_left = cv2.initUndistortRectifyMap(mtx_left, dist_left, R_left, P_left, gray_left.shape[::-1], cv2.CV_32FC1) mapx_right, mapy_right = cv2.initUndistortRectifyMap(mtx_right, dist_right, R_right, P_right, gray_right.shape[::-1], cv2.CV_32FC1) img_left = cv2.imread('left.jpg') img_right = cv2.imread('right.jpg') dst_left = cv2.remap(img_left, mapx_left, mapy_left, cv2.INTER_LINEAR) dst_right = cv2.remap(img_right, mapx_right, mapy_right, cv2.INTER_LINEAR) # 立体匹配 stereoMatcher = cv2.StereoSGBM_create( minDisparity=0, numDisparities=16*6, # 要为16的倍数 blockSize=5, speckleWindowSize=100, speckleRange=2, disp12MaxDiff=1, uniquenessRatio=15, P1=8 * 3**2, P2=32 * 3**2 ) gray_left = cv2.cvtColor(dst_left, cv2.COLOR_BGR2GRAY) gray_right = cv2.cvtColor(dst_right, cv2.COLOR_BGR2GRAY) disparity = stereoMatcher.compute(gray_left, gray_right).astype(np.float32) / 16.0 # 转换为三维坐标 points3d = cv2.reprojectImageTo3D(disparity, Q) points3d = points3d.reshape(-1, 3) mask = disparity > disparity.min() colors = dst_left.reshape(-1, 3)[mask] pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points3d[mask]) pcd.colors = o3d.utility.Vector3dVector(colors) # 可视化 o3d.visualization.draw_geometries([pcd]) ``` 需要注意的是,这只是一个简单的示例代码,实际操作中可能会涉及到更多的细节和问题,需要根据具体情况进行调整和修改。

相关推荐

最新推荐

recommend-type

端午送祝福语小程序源码(可对接流量主)

该小程序的作用就是祝福语生成距离端午节也不远了,可以抓住机会蹭一波流量用户可以点击直接发送祝福语给好友 分享的时候会显示用。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

ISP图像工程师需要掌握的知识技能

ISP图像工程师需要掌握一些相关的知识和技能,包括: 1. 图像处理的基本知识和方法,包括图像增强、滤波、分割、降噪等 2. 熟练掌握一门编程语言,可以使用这门语言实现图像处理算法,常用的编程语言包括C++、Python、Matlab等 3. 了解图像传感器的工作原理和特性,以及图像传感器的校准和校正 4. 熟悉图像处理的软件工具,包括Photoshop、GIMP等 5. 了解图像处理硬件系统的基本知识,包括DSP、FPGA、GPU等 6. 具有良好的数学功底,能够利用数学方法解决图像处理中的问题 7. 具有较强的解决问题的能力,能够独立分析和解决实际问题 8. 具有较强的沟通
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。