在什么条件下,两序列的圆周卷积和线性卷积相等?
时间: 2024-04-07 08:31:44 浏览: 162
对于长度为N的两个序列x(n)和y(n),它们的线性卷积为:
h(n) = x(n) * y(n) = ∑(k = 0 to N-1) x(k) * y((n-k) mod N)
其中,“mod”表示取模运算。而它们的圆周卷积为:
g(n) = x(n) ⊛ y(n) = ∑(k = 0 to N-1) x(k) * y((n-k) mod N)
可以看到,两个卷积的计算公式非常相似,唯一的区别在于圆周卷积中的“⊛”符号。
当x(n)和y(n)两个序列的长度N互质时,它们的圆周卷积和线性卷积是相等的,即:
g(n) = h(n)
当N不是质数时,它们的圆周卷积和线性卷积不相等。这是因为当N不是质数时,存在一些非零序列,使得它们的线性卷积为零,但圆周卷积不为零。例如,当N=4时,x(n)=[1,0,1,0],y(n)=[1,0,0,0],它们的线性卷积为[1,0,1,0],但圆周卷积为[1,0,1,1]。因此,当N不是质数时,我们需要注意两种卷积的区别。
相关问题
在什么条件下,两序列的圆周卷积和线性卷积相等
两个序列 $x[n]$ 和 $h[n]$ 的线性卷积 $y[n]=x[n]*h[n]$ 和圆周卷积 $z[n]=x[n]\circledast h[n]$ 的关系可以表示为:
$$
z[n]=\sum_{m=0}^{N-1}x[(n-m)\bmod N]h[m]
$$
其中,$N$ 表示序列长度,$\bmod$ 表示取模运算。
当序列 $x[n]$ 和 $h[n]$ 的长度相等且为 $N$,并且 $x[n]$ 和 $h[n]$ 呈周期性重复,即 $x[n]=x[n+N]$ 和 $h[n]=h[n+N]$,则它们的线性卷积和圆周卷积相等,即 $y[n]=z[n]$。
这个结论可以通过证明得到。具体来说,可以将线性卷积和圆周卷积的公式代入,得到:
$$
\begin{aligned}
y[n]&=\sum_{m=0}^{N-1}x[m]h[n-m]\\
z[n]&=\sum_{m=0}^{N-1}x[(n-m)\bmod N]h[m]
\end{aligned}
$$
由于 $x[n]$ 和 $h[n]$ 呈周期性重复,因此有 $x[(n-m)\bmod N]=x[n-m+kN]$ 和 $h[m]=h[m+lN]$,其中 $k$ 和 $l$ 是任意整数。因此,可以将 $y[n]$ 和 $z[n]$ 中的 $h[n-m]$ 和 $h[m]$ 分别替换为 $h[n-m+kN]$ 和 $h[m+lN]$,得到:
$$
\begin{aligned}
y[n]&=\sum_{k=0}^{\infty}\sum_{l=0}^{\infty}x[n-m+kN]h[m+lN]\\
z[n]&=\sum_{k=0}^{\infty}\sum_{l=0}^{\infty}x[n-m+kN]h[m+lN]
\end{aligned}
$$
由于 $x[n]$ 和 $h[n]$ 是周期性重复的,因此可以将 $k$ 和 $l$ 的范围限制在 $0\leq k,l\leq 1$,并且将 $m$ 的范围限制在 $0\leq m\leq N-1$,即:
$$
\begin{aligned}
y[n]&=\sum_{m=0}^{N-1}x[n-m]h[m]\\
z[n]&=\sum_{m=0}^{N-1}x[n-m]h[m]
\end{aligned}
$$
因此,可以得到 $y[n]=z[n]$,即在序列长度相等且呈周期性重复的情况下,线性卷积和圆周卷积是相等的。
线性卷积和圆周卷积何时相等
线性卷积(也称为标准卷积)通常应用于信号处理和深度学习中的图像或时间序列数据,而圆周卷积主要是在离散傅里叶变换(DFT)的上下文中使用,用于处理周期性信号。两者之间的等价条件取决于特定的数学背景。
线性卷积在实数域中,当输入信号和滤波器满足特定边界条件,并且假设它们都是无限长或者在边界上被正确地延伸(如零填充),那么它们与周期延拓后在频率域(通过DFT)进行的圆周卷积是等效的。这是因为实数信号的DFT具有对称性,这使得我们可以通过简单的裁剪得到圆周卷积的结果。
然而,在一般情况下,线性卷积是在时间或空间域直接操作,而圆周卷积则是在频域处理,两者在物理意义和计算方法上是不同的。只有在特定条件下,如上述提到的周期性和无限延伸,这两个概念才会在数学上相等。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![pptx](https://img-home.csdnimg.cn/images/20241231044947.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)