使用手写集数据集编写DBN的代码
时间: 2023-05-18 10:04:38 浏览: 77
以下是使用手写集数据集编写DBN的代码示例:
```python
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# 定义DBN的参数
n_visible = 784 # 输入层神经元数量
n_hidden1 = 500 # 隐藏层1神经元数量
n_hidden2 = 200 # 隐藏层2神经元数量
n_hidden3 = 50 # 隐藏层3神经元数量
n_classes = 10 # 输出层神经元数量
# 定义输入和输出占位符
x = tf.placeholder(tf.float32, [None, n_visible])
y = tf.placeholder(tf.float32, [None, n_classes])
# 定义权重和偏置变量
weights = {
'w1': tf.Variable(tf.random_normal([n_visible, n_hidden1])),
'w2': tf.Variable(tf.random_normal([n_hidden1, n_hidden2])),
'w3': tf.Variable(tf.random_normal([n_hidden2, n_hidden3])),
'out': tf.Variable(tf.random_normal([n_hidden3, n_classes]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden1])),
'b2': tf.Variable(tf.random_normal([n_hidden2])),
'b3': tf.Variable(tf.random_normal([n_hidden3])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# 定义每一层的输出
def layer(input, weight, bias):
output = tf.nn.sigmoid(tf.matmul(input, weight) + bias)
return output
# 定义DBN的前向传播过程
def DBN(x, weights, biases):
hidden1 = layer(x, weights['w1'], biases['b1'])
hidden2 = layer(hidden1, weights['w2'], biases['b2'])
hidden3 = layer(hidden2, weights['w3'], biases['b3'])
output = tf.matmul(hidden3, weights['out']) + biases['out']
return output
# 定义损失函数和优化器
pred = DBN(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
# 定义评估模型的准确率
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# 训练DBN模型
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(50):
avg_cost = 0.
total_batch = int(mnist.train.num_examples / 100)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(100)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_xs, y: batch_ys})
avg_cost += c / total_batch
if epoch % 5 == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print("Optimization Finished!")
print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
```
希望这个代码示例能够帮助你理解如何使用手写集数据集编写DBN的代码。
阅读全文