Unet的pytorch代码
时间: 2023-09-23 20:04:45 浏览: 127
Unet pytorch实现
以下是使用PyTorch实现Unet的代码:
```python
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=1, features=[64, 128, 256, 512]):
super(UNet, self).__init__()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# Down part of UNet
for feature in features:
self.downs.append(DoubleConv(in_channels, feature))
in_channels = feature
# Up part of UNet
for feature in reversed(features):
self.ups.append(nn.ConvTranspose2d(feature*2, feature, kernel_size=2, stride=2))
self.ups.append(DoubleConv(feature*2, feature))
self.bottleneck = DoubleConv(features[-1], features[-1]*2)
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)
def forward(self, x):
skip_connections = []
# Down part of UNet
for down in self.downs:
x = down(x)
skip_connections.append(x)
x = self.pool(x)
# Bottom part of UNet
x = self.bottleneck(x)
# Up part of UNet
skip_connections = skip_connections[::-1]
for idx in range(0, len(self.ups), 2):
x = self.ups[idx](x)
skip_connection = skip_connections[idx//2]
if x.shape != skip_connection.shape:
x = nn.functional.interpolate(x, size=skip_connection.shape[2:], mode='bilinear', align_corners=True)
concat_skip = torch.cat((skip_connection, x), dim=1)
x = self.ups[idx+1](concat_skip)
return self.final_conv(x)
```
上面的代码实现了一个基本的UNet模型,包括一个双卷积模块和下采样模块(down),上采样模块(up),还有一个瓶颈部分(bottleneck)。在forward函数中,首先使用下采样模块(down)将输入图像降采样,然后进入瓶颈部分(bottleneck),最后使用上采样模块(up)将图像上采样到原始大小。这个模型可以用于图像分割任务。
阅读全文