用DQN训练unet建筑物变化检测pytorch代码
时间: 2024-01-04 08:04:16 浏览: 123
Pytorch 实现DQN强化学习.zip
5星 · 资源好评率100%
下面是使用DQN训练UNet进行建筑物变化检测的PyTorch代码。请注意,这只是一个示例,你需要根据你的数据集和模型进行适当的修改。
首先,我们需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
from collections import deque
```
接下来,我们定义DQN模型。在这个示例中,我们将使用一个简单的全连接神经网络作为DQN,它将接受UNet的输出并输出一个Q值。
```python
class DQN(nn.Module):
def __init__(self, state_size, action_size):
super(DQN, self).__init__()
self.fc1 = nn.Linear(state_size, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, action_size)
def forward(self, x):
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return x
```
现在我们定义一个ReplayBuffer类,用于存储先前的状态、动作、奖励和下一个状态,以便我们可以使用DQN从中随机选择一些样本进行训练。
```python
class ReplayBuffer():
def __init__(self, buffer_size):
self.buffer_size = buffer_size
self.buffer = deque(maxlen=buffer_size)
def add(self, state, action, reward, next_state, done):
experience = (state, action, reward, next_state, done)
self.buffer.append(experience)
def sample(self, batch_size):
if len(self.buffer) < batch_size:
batch = random.sample(self.buffer, len(self.buffer))
else:
batch = random.sample(self.buffer, batch_size)
states, actions, rewards, next_states, dones = zip(*batch)
return states, actions, rewards, next_states, dones
```
现在我们定义一个Agent类,它将使用DQN模型和ReplayBuffer类来实现DQN算法。
```python
class Agent():
def __init__(self, state_size, action_size, buffer_size, batch_size, gamma, epsilon, epsilon_decay):
self.state_size = state_size
self.action_size = action_size
self.buffer_size = buffer_size
self.batch_size = batch_size
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_decay = epsilon_decay
self.epsilon_min = 0.01
self.tau = 0.1
self.model = DQN(state_size, action_size)
self.target_model = DQN(state_size, action_size)
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001)
self.memory = ReplayBuffer(buffer_size)
def select_action(self, state):
if random.uniform(0, 1) < self.epsilon:
return random.randrange(self.action_size)
else:
state = torch.from_numpy(state).float().unsqueeze(0)
q_values = self.model(state)
return np.argmax(q_values.detach().numpy())
def train(self):
if len(self.memory.buffer) < self.batch_size:
return
states, actions, rewards, next_states, dones = self.memory.sample(self.batch_size)
states = torch.from_numpy(np.array(states)).float()
actions = torch.from_numpy(np.array(actions)).long()
rewards = torch.from_numpy(np.array(rewards)).float()
next_states = torch.from_numpy(np.array(next_states)).float()
dones = torch.from_numpy(np.array(dones)).float()
q_values = self.model(states).gather(1, actions.unsqueeze(1)).squeeze(1)
next_q_values = self.target_model(next_states).max(1)[0].detach()
expected_q_values = rewards + self.gamma * next_q_values * (1 - dones)
loss = nn.functional.smooth_l1_loss(q_values, expected_q_values)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
for param, target_param in zip(self.model.parameters(), self.target_model.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
```
最后,我们定义一个主函数,它将训练我们的DQN模型并输出结果。
```python
def main():
state_size = 64
action_size = 2
buffer_size = 100000
batch_size = 32
gamma = 0.99
epsilon = 1.0
epsilon_decay = 0.995
num_episodes = 1000
agent = Agent(state_size, action_size, buffer_size, batch_size, gamma, epsilon, epsilon_decay)
# 训练循环
for episode in range(num_episodes):
# 初始化环境
state = env.reset()
# 记录总奖励
total_reward = 0
# 训练循环
while True:
# 选择动作
action = agent.select_action(state)
# 执行动作并观察结果
next_state, reward, done, _ = env.step(action)
# 将经验添加到回放缓冲区
agent.memory.add(state, action, reward, next_state, done)
# 训练DQN
agent.train()
# 更新状态
state = next_state
# 更新总奖励
total_reward += reward
# 如果游戏结束了,退出循环
if done:
break
# 输出训练结果
print("Episode: {}/{}, Total Reward: {}, Epsilon: {:.2f}".format(episode+1, num_episodes, total_reward, agent.epsilon))
if __name__ == "__main__":
main()
```
请注意,上面的代码仅用作示例。你需要根据你的数据集和模型进行适当的修改。
阅读全文