DQN pytorch 代码
时间: 2023-09-22 18:05:03 浏览: 104
DQN pytorch_pytorch_pytorchcnndqn_q学习_DQN_deepqlearning
5星 · 资源好评率100%
以下是一个简单的DQN算法的PyTorch实现示例:
```python
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from collections import deque
class DQNAgent:
def __init__(self, state_dim, action_dim, lr, gamma, epsilon, epsilon_decay, epsilon_min, memory_size, batch_size):
self.state_dim = state_dim
self.action_dim = action_dim
self.lr = lr
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_decay = epsilon_decay
self.epsilon_min = epsilon_min
self.memory = deque(maxlen=memory_size)
self.batch_size = batch_size
self.steps = 0
self.model = self.build_model()
self.target_model = self.build_model()
self.update_target_model()
def build_model(self):
model = nn.Sequential(
nn.Linear(self.state_dim, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, self.action_dim)
)
optimizer = optim.Adam(model.parameters(), lr=self.lr)
model.compile(loss=F.mse_loss, optimizer=optimizer)
return model
def update_target_model(self):
self.target_model.load_state_dict(self.model.state_dict())
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return np.random.choice(self.action_dim)
q_values = self.model.predict(state)
return np.argmax(q_values[0])
def replay(self):
if len(self.memory) < self.batch_size:
return
minibatch = random.sample(self.memory, self.batch_size)
for state, action, reward, next_state, done in minibatch:
target = self.model.predict(state)
if done:
target[0][action] = reward
else:
t = self.target_model.predict(next_state)[0]
target[0][action] = reward + self.gamma * np.amax(t)
self.model.fit(state, target, epochs=1, verbose=0)
self.steps += 1
if self.steps % 100 == 0:
self.update_target_model()
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
```
这是一个简单的DQNAgent类,其中包含了构建模型、记忆回放、动作选择和训练等方法。在构建模型时,我们使用了一个简单的三层神经网络,用于预测每个动作的Q值。在训练过程中,我们使用了Adam优化器和均方误差损失函数,并且使用了目标网络来提高算法的稳定性。
阅读全文