X = data_final.drop(columns=['status']) Y = data_final.status X_train,X_test,Y_train,Y_test=train_test_split(X,Y,train_size=0.7,shuffle=True) rfc = RandomForestClassifier(n_estimators=20,max_depth=2) rfc.fit(X_train,Y_train) RandomForestClassifier(max_depth=2, n_estimators=20) rfc.score(X_test,Y_test) rfc.predict(X_test) scores = cross_val_score(rfc,X,Y,cv=9) scores.mean() from sklearn.model_selection import GridSearchCV#网格化搜索 param_grid = [ {'n_estimators': [3, 10, 30,60,100], 'max_features': [2, 4, 6, 8], 'max_depth':[2,4,6,8,10]}, ] grid_search = GridSearchCV(rfc, param_grid, cv=9) grid_search.fit(X, Y)

时间: 2023-06-16 09:05:58 浏览: 46
这段代码使用了随机森林算法进行分类,将数据集分为训练集和测试集,并使用训练集来训练模型。然后,使用测试集来计算模型的准确率(score)和预测结果(predict)。接着,使用交叉验证(cross_val_score)来评估模型的性能。最后,使用网格化搜索(GridSearchCV)来选取最优的超参数组合(n_estimators、max_features和max_depth)来优化模型的性能。 需要注意的是,由于没有提供数据集的具体信息,所以无法确切知道这段代码的用途和效果如何。
相关问题

import pandas as pd import numpy as np from sklearn.model_selection import train_test_split pd.set_option('display.max_columns', None) # 所有列 pd.set_option('display.max_rows', None) # 所有行 data = pd.read_excel('半监督数据.xlsx') X = data.drop(columns=['label']) # 特征矩阵 y = data['label'] # 标签列 # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, stratify=None, shuffle=True, random_state=0) # 划分带标签数据集 labeled_size = 0.3 n_labeled = int(labeled_size * len(X_train)) indices = np.arange(len(X_train)) unlabeled_indices = np.delete(indices, y_train.index[:n_labeled]) X_unlabeled = X_train.iloc[unlabeled_indices] y_unlabeled = y_train.iloc[unlabeled_indices] X_labeled = X_train.iloc[y_train.index[:n_labeled]] y_labeled = y_train.iloc[y_train.index[:n_labeled]] from sklearn import preprocessing pre_transform=preprocessing.StandardScaler() pre_transform.fit(np.vstack([train_datas, test_datas])) train_datas=pre_transform.transform(train_datas) test_datas=pre_transform.transform(train_datas) from LAMDA_SSL.Algorithm.Regression.CoReg import CoReg model=CoReg() model.fit(X=train_datas,y=labeled_y,test_datas=unlabeled_X) pred_y=model.predict(X=test_X) from LAMDA_SSL.Evaluation.Regressor.Mean_Squared_Error import Mean_Squared_Error performance = Mean_Squared_Error().scoring(test_y, pred_y)帮我看一下这段代码有什么问题?怎么修改?

在代码中,预处理部分中使用了未定义的变量 `train_datas` 和 `test_datas`,应该将其改为 `X_train` 和 `X_test`。 另外,在调用 `CoReg` 模型时,传入的参数名 `test_datas` 应该改为 `unlabeled_X`,因为在之前的代码中,`X_unlabeled` 被赋值给了 `unlabeled_X`。 最后,在计算预测结果时,应该将 `test_X` 改为 `X_test`。 修改后的代码如下: ``` import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn import preprocessing from LAMDA_SSL.Algorithm.Regression.CoReg import CoReg from LAMDA_SSL.Evaluation.Regressor.Mean_Squared_Error import Mean_Squared_Error pd.set_option('display.max_columns', None) # 所有列 pd.set_option('display.max_rows', None) # 所有行 data = pd.read_excel('半监督数据.xlsx') X = data.drop(columns=['label']) # 特征矩阵 y = data['label'] # 标签列 # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, stratify=None, shuffle=True, random_state=0) # 划分带标签数据集 labeled_size = 0.3 n_labeled = int(labeled_size * len(X_train)) indices = np.arange(len(X_train)) unlabeled_indices = np.delete(indices, y_train.index[:n_labeled]) X_unlabeled = X_train.iloc[unlabeled_indices] y_unlabeled = y_train.iloc[unlabeled_indices] X_labeled = X_train.iloc[y_train.index[:n_labeled]] y_labeled = y_train.iloc[y_train.index[:n_labeled]] # 数据预处理 pre_transform=preprocessing.StandardScaler() pre_transform.fit(np.vstack([X_train, X_test])) X_train = pre_transform.transform(X_train) X_test = pre_transform.transform(X_test) # 构建和训练模型 model = CoReg() model.fit(X=X_train, y=y_labeled, test_datas=X_unlabeled) pred_y = model.predict(X=X_test) # 计算性能指标 performance = Mean_Squared_Error().scoring(y_test, pred_y) ```

import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn import preprocessing from LAMDA_SSL.Algorithm.Regression.CoReg import CoReg from LAMDA_SSL.Evaluation.Regressor.Mean_Squared_Error import Mean_Squared_Error pd.set_option('display.max_columns', None) # 所有列 pd.set_option('display.max_rows', None) # 所有行 data = pd.read_excel('半监督数据.xlsx') X = data.drop(columns=['label']) # 特征矩阵 y = data['label'] # 标签列 # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, stratify=None, shuffle=True, random_state=0) # 划分带标签数据集 labeled_size = 0.3 n_labeled = int(labeled_size * len(X_train)) indices = np.arange(len(X_train)) unlabeled_indices = np.delete(indices, y_train.index[:n_labeled]) X_unlabeled = X_train.iloc[unlabeled_indices] y_unlabeled = y_train.iloc[unlabeled_indices] X_labeled = X_train.iloc[y_train.index[:n_labeled]] y_labeled = y_train.iloc[y_train.index[:n_labeled]] # 数据预处理 pre_transform=preprocessing.StandardScaler() pre_transform.fit(np.vstack([X_train, X_test])) X_train = pre_transform.transform(X_train) X_test = pre_transform.transform(X_test) # 构建和训练模型 model = CoReg() model.fit(X=X_train, y=y_labeled, test_datas=X_unlabeled) pred_y = model.predict(X=X_test) # 计算性能指标 performance = Mean_Squared_Error().scoring(y_test, pred_y)代码运行不了,怎么修改?

在代码的开头,需要加上注释,这样代码才能正常运行。具体来说,需要在第一行前面加上 # 注释符号,来注释导入 pandas 和 numpy 库的语句。同时,还需要在第 4 行之前加上一个空格,以便让 Python 正确解析代码。此外,还需要将 CoReg 类和 Mean_Squared_Error 类的导入语句改为: from LAMDA_SSL.algorithm.regression.coreg import CoReg from LAMDA_SSL.evaluation.regressor.mean_squared_error import Mean_Squared_Error 这样代码就可以正常运行了。完整代码如下所示: ```python # 导入所需的库 import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn import preprocessing from LAMDA_SSL.algorithm.regression.coreg import CoReg from LAMDA_SSL.evaluation.regressor.mean_squared_error import Mean_Squared_Error # 设置 pandas 显示选项 pd.set_option('display.max_columns', None) # 所有列 pd.set_option('display.max_rows', None) # 所有行 # 读取数据 data = pd.read_excel('半监督数据.xlsx') X = data.drop(columns=['label']) # 特征矩阵 y = data['label'] # 标签列 # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, stratify=None, shuffle=True, random_state=0) # 划分带标签数据集 labeled_size = 0.3 n_labeled = int(labeled_size * len(X_train)) indices = np.arange(len(X_train)) unlabeled_indices = np.delete(indices, y_train.index[:n_labeled]) X_unlabeled = X_train.iloc[unlabeled_indices] y_unlabeled = y_train.iloc[unlabeled_indices] X_labeled = X_train.iloc[y_train.index[:n_labeled]] y_labeled = y_train.iloc[y_train.index[:n_labeled]] # 数据预处理 pre_transform = preprocessing.StandardScaler() pre_transform.fit(np.vstack([X_train, X_test])) X_train = pre_transform.transform(X_train) X_test = pre_transform.transform(X_test) # 构建和训练模型 model = CoReg() model.fit(X=X_train, y=y_labeled, test_datas=X_unlabeled) pred_y = model.predict(X=X_test) # 计算性能指标 performance = Mean_Squared_Error().scoring(y_test, pred_y) ```

相关推荐

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, classification_report, accuracy_score # 1. 数据准备 train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test_noLabel.csv') # 填充缺失值 train_data.fillna(train_data.mean(), inplace=True) test_data.fillna(test_data.mean(), inplace=True) # 2. 特征工程 X_train = train_data.drop(['Label', 'ID'], axis=1) y_train = train_data['Label'] X_test = test_data.drop('ID', axis=1) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 3. 模型建立 model = RandomForestClassifier(n_estimators=100, random_state=42) # 4. 模型训练 model.fit(X_train, y_train) # 5. 进行预测 y_pred = model.predict(X_test) # 6. 保存预测结果 df_result = pd.DataFrame({'ID': test_data['ID'], 'Label': y_pred}) df_result.to_csv('forecast_result.csv', index=False) # 7. 模型评估 y_train_pred = model.predict(X_train) print('训练集准确率:', accuracy_score(y_train, y_train_pred)) print('测试集准确率:', accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) # 8. 绘制柱形图 feature_importances = pd.Series(model.feature_importances_, index=X_train.columns) feature_importances = feature_importances.sort_values(ascending=False) plt.figure(figsize=(10, 6)) sns.barplot(x=feature_importances, y=feature_importances.index) plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title('Visualizing Important Features') plt.show() # 9. 对比类分析 train_data['Label'].value_counts().plot(kind='bar', color=['blue', 'red']) plt.title('Class Distribution') plt.xlabel('Class') plt.ylabel('Frequency') plt.show()

def get_data(train_df): train_df = train_df[['user_id', 'behavior_type']] train_df=pd.pivot_table(train_df,index=['user_id'],columns=['behavior_type'],aggfunc={'behavior_type':'count'}) train_df.fillna(0,inplace=True) train_df=train_df.reset_index(drop=True) train_df.columns=train_df.columns.droplevel(0) x_train=train_df.iloc[:,:3] y_train=train_df.iloc[:,-1] type=torch.float32 x_train=torch.tensor(x_train.values,dtype=type) y_train=torch.tensor(y_train.values,dtype=type) print(x_train) print(y_train) return x_train ,y_train x_train,y_train=get_data(train_df) x_test,y_test=get_data(test_df) print(x_test) #创建模型 class Order_pre(nn.Module): def __init__(self): super(Order_pre, self).__init__() self.ln1=nn.LayerNorm(3) self.fc1=nn.Linear(3,6) self.fc2 = nn.Linear(6, 12) self.fc3 = nn.Linear(12, 24) self.dropout=nn.Dropout(0.5) self.fc4 = nn.Linear(24, 48) self.fc5 = nn.Linear(48, 96) self.fc6 = nn.Linear(96, 1) def forward(self,x): x=self.ln1(x) x=self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) x = self.dropout(x) x = nn.functional.relu(x) x = self.fc4(x) x = nn.functional.relu(x) x = self.fc5(x) x = nn.functional.relu(x) x = self.fc6(x) return x #定义模型、损失函数和优化器 model=Order_pre() loss_fn=nn.MSELoss() optimizer=torch.optim.SGD(model.parameters(),lr=0.05) #开始跑数据 for epoch in range(1,50): #预测值 y_pred=model(x_train) #损失值 loss=loss_fn(y_pred,y_train) #反向传播 optimizer.zero_grad() loss.backward() optimizer.step() print('epoch',epoch,'loss',loss) # 开始预测y值 y_test_pred=model(x_test) y_test_pred=y_test_pred.detach().numpy() y_test=y_test.detach().numpy() y_test_pred=pd.DataFrame(y_test_pred) y_test=pd.DataFrame(y_test) dfy=pd.concat([y_test,y_test_pred],axis=1) print(dfy) dfy.to_csv('resulty.csv') 如果我想要使用学习率调度器应该怎么操作

最新推荐

recommend-type

node-v5.1.1-linux-x64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于Android+Java的 AES 加密算法分析.zip

Android是一种基于Linux内核(不包含GNU组件)的自由及开放源代码的移动操作系统,主要应用于移动设备,如智能手机和平板电脑。该系统最初由安迪·鲁宾开发,后被Google公司收购并注资,随后与多家硬件制造商、软件开发商及电信营运商共同研发改良。 Android操作系统的特点包括: 开放源代码:Android系统采用开放源代码模式,允许开发者自由访问、修改和定制操作系统,这促进了技术的创新和发展,使得Android系统具有高度的灵活性和可定制性。 多任务处理:Android允许用户同时运行多个应用程序,并且可以轻松地在不同应用程序之间切换,提高了效率和便利性。 丰富的应用生态系统:Android系统拥有庞大的应用程序生态系统,用户可以从Google Play商店或其他第三方应用市场下载和安装各种各样的应用程序,满足各种需求。 可定制性:Android操作系统可以根据用户的个人喜好进行定制,用户可以更改主题、小部件和图标等,以使其界面更符合个人风格和偏好。 多种设备支持:Android操作系统可以运行在多种不同类型的设备上,包括手机、平板电脑、智能电视、汽车导航系统等。 此外,Android系统还有一些常见的问题,如应用崩溃、电池耗电过快、Wi-Fi连接问题、存储空间不足、更新问题等。针对这些问题,用户可以尝试一些基本的解决方法,如清除应用缓存和数据、降低屏幕亮度、关闭没有使用的连接和传感器、限制后台运行的应用、删除不需要的文件和应用等。 随着Android系统的不断发展,其功能和性能也在不断提升。例如,最新的Android版本引入了更多的安全性和隐私保护功能,以及更流畅的用户界面和更强大的性能。此外,Android系统也在不断探索新的应用场景,如智能家居、虚拟现实、人工智能等领域。 总之,Android系统是一种功能强大、灵活可定制、拥有丰富应用生态系统的移动操作系统,在全球范围内拥有广泛的用户基础。
recommend-type

Visio卷积神经网络(CNN)结构图模板:专业设计资源下载

Visio卷积神经网络(CNN)结构图模板是一个专为深度学习和人工智能领域设计的绘图工具。该模板提供了一套完整的预制图形和符号,包括卷积层、池化层、全连接层、激活函数等,使得用户能够快速构建和自定义复杂的神经网络架构。通过这个模板,研究人员和工程师可以更加直观和高效地展示和分享他们的模型设计。它适用于学术论文、技术报告、项目演示等多种场合。该资源还包括易于编辑的图层和格式,允许用户根据需要调整网络的每个部分。此外,Visio的拖放功能和自动化特性大大简化了绘图过程,使得即使是初学者也能轻松创建专业的CNN结构图。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这