data['mol'] = data['smiles'].apply(lambda x: Chem.MolFromSmiles(x)) print("data:",data.shape) data= data.dropna(axis=0) print("data:",data.shape) data['tpsa'] = data['mol'].apply(lambda x: Descriptors.TPSA(x)) data['mol_w'] = data['mol'].apply(lambda x: Descriptors.ExactMolWt(x)) data['num_valence_electorons'] = data['mol'].apply(lambda x: Descriptors.NumValenceElectrons(x)) data['num_heteroatoms'] = data['mol'].apply(lambda x: Descriptors.NumHeteroatoms(x)) from sklearn.model_selection import train_test_split y = data.pIC51.values X = data.drop(columns=['smiles','pIC51','mol']) x_train,x_test ,y_train,y_test = train_test_split(X, y, test_size=.20,random_state=42) X.index = range(0,1974)

时间: 2024-01-14 16:02:08 浏览: 61
这是一个Python代码片段,用于对数据文件进行处理和划分。具体来说,代码首先通过将smiles列中的每个SMILES字符串转换为分子对象,将其存储在新的mol列中。然后,代码删除包含空值的行。接下来,代码使用rdkit库中的Descriptors函数,计算每个分子的Topological Polar Surface Area(TPSA)、分子质量、价电子数和非碳原子数,并将这些特征存储在新的列中。最后,代码使用sklearn库的train_test_split函数,将数据划分为训练集和测试集,并将原始数据的索引重置为0-1973。其中,y表示目标变量,即pIC51值,X表示所有特征,包括smiles、mol和计算出的特征,x_train、x_test、y_train和y_test表示训练集和测试集的输入和输出。
相关问题

# 转换SMILES为分子指纹 smiles = data['SMILES'] fps = [] for smi in smiles: mol = Chem.MolFromSmiles(smi) fp = rdFingerprintGenerator.GetCountFPs([mol])[0] fps.append(fp.ToBitString())

你提供的代码是将SMILES转换为分子指纹,并将分子指纹表示为字符串(使用 `ToBitString()` 方法)。请注意,这种表示形式是一种二进制字符串,而不是数值数组。如果你想将分子指纹作为数值特征使用,你可以进一步将这些字符串转换为数值数组。 以下是修改后的代码,演示了如何将分子指纹字符串转换为数值数组: ```python import pandas as pd from rdkit import Chem from rdkit.Chem import rdFingerprintGenerator import numpy as np import xgboost as xgb # 读取数据集 data = pd.read_csv('your_data.csv') # 转换SMILES为分子指纹 smiles = data['SMILES'] fps = [] for smi in smiles: mol = Chem.MolFromSmiles(smi) fp = rdFingerprintGenerator.GetCountFPs([mol])[0] fps.append(fp.ToBitString()) # 将分子指纹字符串转换为数值数组 fps_array = np.array([list(fp) for fp in fps], dtype=int) # 将分子指纹加入数据集 data['Fingerprint'] = fps_array.tolist() # 准备训练数据 X = np.array(data['Fingerprint']) y = np.array(data['target_variable']) # 定义XGBoost模型 model = xgb.XGBClassifier() # 拟合模型 model.fit(X, y) # 进行预测 predictions = model.predict(X) ``` 请注意,在这个示例中,我们将分子指纹字符串转换为了一个由0和1组成的数值数组(使用 `np.array` 和 `list(fp)`)。这样,分子指纹可以作为数值特征被正确处理和使用。

for smiles in smiles_list: mol = Chem.MolFromSmiles(smiles) mols.append(mol) def fragment_score(mols, fragment_lib): fragments = set() for mol in mols: mol_fragment = Chem.GetMolFrags(mol, asMols=True) for mol_frag in mol_fragment:优化这段代码

这段代码可以进行如下优化: 1. 使用列表推导式替换 for 循环添加元素到列表的操作,可以让代码更简洁: ``` mols = [Chem.MolFromSmiles(smiles) for smiles in smiles_list] ``` 2. 可以使用集合推导式替换双重循环添加元素到集合的操作,可以让代码更简洁: ``` fragments = {mol_frag for mol in mols for mol_frag in Chem.GetMolFrags(mol, asMols=True)} ``` 3. 可以使用生成器表达式替换列表推导式,可以避免创建中间结果列表,提高代码的效率: ``` mols = (Chem.MolFromSmiles(smiles) for smiles in smiles_list) ``` 4. 可以使用列表生成器替换集合推导式,可以避免创建中间结果集合,提高代码的效率: ``` fragments = [mol_frag for mol in mols for mol_frag in Chem.GetMolFrags(mol, asMols=True)] ``` 综上所述,优化后的代码可以写成以下几种形式: 1. 使用列表推导式和集合推导式: ``` mols = [Chem.MolFromSmiles(smiles) for smiles in smiles_list] fragments = {mol_frag for mol in mols for mol_frag in Chem.GetMolFrags(mol, asMols=True)} ``` 2. 使用生成器表达式和列表生成器: ``` mols = (Chem.MolFromSmiles(smiles) for smiles in smiles_list) fragments = [mol_frag for mol in mols for mol_frag in Chem.GetMolFrags(mol, asMols=True)] ``` 注意,如果需要多次使用 `mols`,最好使用列表推导式创建列表,因为生成器只能遍历一次。

相关推荐

import argparse import numpy as np from openeye import oechem def clear_stereochemistry(mol): clear_atom_stereochemistry(mol) clear_bond_sterochemistry(mol) oechem.OESuppressHydrogens(mol, False, False, False) def clear_atom_stereochemistry(mol): for atom in mol.GetAtoms(): chiral = atom.IsChiral() stereo = oechem.OEAtomStereo_Undefined v = [] for nbr in atom.GetAtoms(): v.append(nbr) if atom.HasStereoSpecified(oechem.OEAtomStereo_Tetrahedral): stereo = atom.GetStereo(v, oechem.OEAtomStereo_Tetrahedral) if chiral or stereo != oechem.OEAtomStereo_Undefined: atom.SetStereo(v, oechem.OEAtomStereo_Tetrahedral, oechem.OEAtomStereo_Undefined) def clear_bond_sterochemistry(mol): for bond in mol.GetBonds(): if bond.HasStereoSpecified(oechem.OEBondStereo_CisTrans): for atomB in bond.GetBgn().GetAtoms(): if atomB == bond.GetEnd(): continue for atomE in bond.GetEnd().GetAtoms(): if atomE == bond.GetBgn(): continue v = [] v.append(atomB) v.append(atomE) stereo = bond.SetStereo(v, oechem.OEBondStereo_CisTrans, oechem.OEBondStereo_Undefined) def abs_smi(x): mol = oechem.OEGraphMol() if oechem.OESmilesToMol(mol, x): clear_stereochemistry(mol) return oechem.OEMolToSmiles(mol) else: return np.nan if __name__ == '__main__': parser = argparse.ArgumentParser(description="Remove stereochemistry from the input data set.") parser.add_argument("--in",dest="infile",help="whitespace-delimited input file",metavar="in.csv") parser.add_argument("--out", dest="outfile", help="output file", metavar="out.csv") args = parser.parse_args() n=0 with open(args.infile, 'r') as ifs: with open(args.outfile, 'w') as ofs: for line in ifs: if n==0: ofs.write(line) n=1 else: parsed = line.strip().split(',') if ('.' not in parsed[0]): ofs.write(f"{abs_smi(parsed[0])},{parsed[1]}\n")

# coding=utf-8 #加载化学库 from rdkit import Chem from rdkit.Chem import Draw from rdkit.Chem import AllChem import pandas as pd import os import csv # 读取 CSV 文件 data = pd.read_csv('dataSetB.csv') # 提取 rxn_smiles 列 # 获取每一列的数据 smiles_mapping_namerxn = data['rxnSmiles_Mapping_NameRxn'] smiles_mapping_indigotk = data['rxnSmiles_Mapping_IndigoTK'] smiles_indigoautomapperknime = data['rxnSmiles_IndigoAutoMapperKNIME'] # 创建目录 os.makedirs('D:/1/', exist_ok=True) os.makedirs('D:/2/', exist_ok=True) os.makedirs('D:/3/', exist_ok=True) # 遍历每个 rxn_smiles 字符串并打印 #for i, smi in enumerate(smiles_mapping_namerxn): # print(smi) # rxn = chem.allchem.reactionfromsmarts(smi) # if rxn is not none: # # 绘制反应结构 # img = draw.reactiontoimage(rxn) # img.show() # img.save(f'd:/1/reaction_{i}.png') # else: # #当无法解析rxn_smiles时,使用print语句打印出相应的消息,并将无法解析的smi值作为附加信息一起打印。 # print("failed to parse rxn_smiles.", smi) #for i, smi in enumerate(smiles_mapping_indigotk): # print(smi) # rxn = Chem.AllChem.ReactionFromSmarts(smi) # if rxn is not None: # 绘制反应结构 # img = Draw.ReactionToImage(rxn) # img.save(f'D:/2/reaction_{i}.png') # else: # 当无法解析rxn_smiles时,使用print语句打印出相应的消息,并将无法解析的smi值作为附加信息一起打印。 # print("Failed to parse rxn_smiles.", smi) def new_func(smi): rxn = Chem.AllChem.ReactionFromSmarts(smi) return rxn #for i, smi in enumerate(smiles_indigoautomapperknime): # print(smi) # rxn = new_func(smi) # if rxn is not None: with open('your_file.csv', 'r') as file: reader = csv.reader(file) rows = list(reader) for row in rows[42154:]: # 绘制反应结构 img = Draw.ReactionToImage(rxn) img.save(f'D:/3/reaction_{i}.png') lines=lines+1 else: #当无法解析rxn_smiles时,使用print语句打印出相应的消息,并将无法解析的smi值作为附加信息一起打印。 print("Failed to parse rxn_smiles.", smi)什么地方错了。、

最新推荐

recommend-type

WX小程序源码小游戏类

WX小程序源码小游戏类提取方式是百度网盘分享地址
recommend-type

grpcio-1.47.2-cp310-cp310-musllinux_1_1_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

cryptography-42.0.3-cp37-abi3-musllinux_1_1_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、