if (A_rows > 0) A_cols = (unsigned int)A[0].size();什么意思
时间: 2024-04-01 11:35:59 浏览: 47
这行代码首先判断A_rows是否大于0,如果是,则表明A向量中有元素(即行数不为0),那么执行第二行代码。
第二行代码定义了一个名为A_cols的无符号整数变量,其值被赋为A向量中第一个元素(即第一行)的大小(即列数)。其中,A[0]表示A向量中的第一个元素(即第一行),size()是该元素的成员函数,用于返回该元素中元素的数量(即大小)。强制类型转换(unsigned int)用于将返回值转换为无符号整数类型。
相关问题
void zeros() { std::fill(data.begin(), data.end(), 0); } void zeros(unsigned int rows, unsigned int cols) { n_rows = rows; n_cols = cols; data.assign(rows * cols, 0); }什么意思
这两个函数都是用来将矩阵中的元素赋值为0的。
第一个函数zeros()没有参数,它使用std::fill()函数将矩阵中的所有元素都赋值为0。这个函数适用于已经存在的矩阵,可以将矩阵中的所有元素清零。
第二个函数zeros(unsigned int rows, unsigned int cols)可以用来创建一个指定大小的矩阵,并将矩阵中的元素赋值为0。在这个函数中,n_rows和n_cols被设置为传入的参数rows和cols,data被分配为一个大小为rows * cols的向量,并使用std::fill()函数将其中的所有元素都赋值为0。这个函数适用于创建一个新的矩阵,并将其中的所有元素初始化为0。
double sharpnessDetect(const cv::Mat &srcImg) { int gaussianSize = 3; cv::Mat img; if (srcImg.channels() != 1) cv::cvtColor(srcImg, img, COLOR_BGR2GRAY); else img = srcImg; cv::Mat out; cv::GaussianBlur(img, out, cv::Size(gaussianSize, gaussianSize), 0, 0); unsigned long d_Fver = 0, d_Fhor = 0, d_Bver = 0, d_Bhor = 0; unsigned long vver = 0, vhor = 0; unsigned long s_Fver = 0, s_Fhor = 0, s_Vver = 0, s_Vhor = 0; double b_Fver = 0.0, b_Fhor = 0.0; double blur_F = 0.0; for (int r = 0; r < img.rows; r++) { for (int c = 0; c < img.cols; c++) { if (r != 0) d_Fver = abs(img.at<uchar>(r, c) - img.at<uchar>(r - 1, c)) if (c != 0) d_Fhor = abs(img.at<uchar>(r, c) - img.at<uchar>(r, c - 1)) if (r != 0) d_Bver = abs(out.at<uchar>(r, c) - out.at<uchar>(r - 1, c)) if (c != 0) d_Bhor = abs(out.at<uchar>(r, c) - out.at<uchar>(r, c - 1)) vver = (d_Fver - d_Bver > 0) ? (d_Fver - d_Bver) : 0 vhor = (d_Fhor - d_Bhor > 0) ? (d_Fhor - d_Bhor) : 0 s_Fver += d_Fver; s_Fhor += d_Fhor; s_Vver += vver; s_Vhor += vhor; } } b_Fver = (s_Fver - s_Vver) / ((double)s_Fver + 1); b_Fhor = (s_Fhor - s_Vhor) / ((double)s_Fhor + 1); blur_F = (b_Fver > b_Fhor) ? b_Fver : b_Fhor; return 1 - blur_F; }
这段代码是一个双边缘检测函数,用于计算图像的清晰度。该函数首先将输入图像转换为灰度图像(如果输入图像不是单通道的),然后使用高斯模糊对灰度图像进行模糊处理。接下来,该函数计算前景和背景的差异,并使用该差异计算垂直和水平方向的前景梯度和背景梯度。然后,该函数计算每个像素的前景梯度和背景梯度之差,并将其用于计算垂直和水平方向的前景梯度和背景梯度的总和。最后,该函数使用前景梯度和背景梯度的总和计算清晰度值,并将其返回。
需要注意的是,在代码中有一些缺少分号的错误,需要在相应的地方添加分号。另外,该函数的实现可能存在一些性能问题,特别是在处理大型图像时。可以考虑使用多线程或GPU加速等技术来提高性能。
阅读全文