TypeError: vocab() got an unexpected keyword argument 'min_count'
时间: 2023-07-29 20:09:15 浏览: 233
这个错误通常是由于使用了不兼容的版本或参数导致的。它可能是由于您使用的是旧版本的库或模型导致的。请确保您正在使用最新版本的库和模型,并检查您的参数是否正确。此外,如果您正在使用自定义代码,请确保您的代码正确使用了库和模型的API。如果问题仍然存在,请提供更多上下文和详细信息,这样我才能更好地帮助您解决问题。
相关问题
TypeError: SemiDataset: __init__() got an unexpected keyword argument '_delete_'
这个错误提示是在使用SemiDataset类的时候出现的,__init__()方法传入了一个不被期望的关键字参数'_delete_'。这个错误可能是由于代码中对SemiDataset类的调用有误导致的。建议检查代码中对SemiDataset类的调用,确保传入的参数符合该类的要求。如果问题仍然存在,可以尝试查看SemiDataset类的文档或者寻求相关技术支持。
TypeError: KMeans.__init__() got an unexpected keyword argument n_jobs
非常抱歉,我的回答还是有误。在`sklearn.cluster`中的`KMeans`类确实没有`n_jobs`参数。如果你想要设置并行计算的数量,可以使用`joblib`库中的`Parallel`和`delayed`函数来实现并行化计算。具体的代码如下:
```
from sklearn.cluster import KMeans
from joblib import Parallel, delayed
kmodel = KMeans(n_clusters=k)
# 将fit方法并行化
Parallel(n_jobs=1, backend='multiprocessing')(delayed(kmodel.fit)(data) for data in data_list)
```
这里使用`Parallel`函数将`fit`方法并行化,`n_jobs`参数指定了并行计算任务数量,`delayed`函数用于将`fit`方法封装成一个可调用的函数,并对数据列表中的每个数据调用一次`fit`方法。
希望这次回答能够解决你的问题,如有疑问,请随时提出。
阅读全文