input1 = Input(shape=(look_back, n_inp1)) conv11 = Conv1D(filters=48, kernel_size=2, padding='same', activation='relu', kernel_initializer='glorot_uniform')(input1) pool11 = MaxPool1D(pool_size=2, padding='valid')(conv11) conv12 = Conv1D(filters=48, kernel_size=2, padding='same', activation='relu', kernel_initializer='glorot_uniform')(pool11) pool12 = MaxPool1D(pool_size=2, padding='valid')(conv12) gru11 = GRU(32, return_sequences=True)(pool12) # drop1 = Dropout(0.2)(gru11) gru12 = GRU(32, return_sequences=False)(gru11)在该模型基础上添加时间注意力机制
时间: 2024-01-31 22:02:30 浏览: 75
要在给定的模型基础上添加时间注意力机制,可以使用Keras的`Attention`层来实现。以下是添加时间注意力机制的示例代码:
```python
from keras.layers import Input, Conv1D, MaxPool1D, GRU, Dropout, Dense, Attention
from keras.models import Model
# 输入层
input1 = Input(shape=(look_back, n_inp1))
# 卷积层和池化层
conv11 = Conv1D(filters=48, kernel_size=2, padding='same', activation='relu', kernel_initializer='glorot_uniform')(input1)
pool11 = MaxPool1D(pool_size=2, padding='valid')(conv11)
conv12 = Conv1D(filters=48, kernel_size=2, padding='same', activation='relu', kernel_initializer='glorot_uniform')(pool11)
pool12 = MaxPool1D(pool_size=2, padding='valid')(conv12)
# GRU层
gru11 = GRU(32, return_sequences=True)(pool12)
gru12 = GRU(32, return_sequences=False)(gru11)
# 添加时间注意力机制
attention = Attention()(gru11)
merged = Dense(32, activation='relu')(attention)
output = Dense(1)(merged)
# 创建模型
model = Model(inputs=input1, outputs=output)
# 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')
# 打印模型结构
model.summary()
```
在上述代码中,我们使用了`Attention`层将GRU层的输出作为输入,并在其上应用了时间注意力机制。注意力机制的输出经过一个全连接层后连接到最终的输出层。请根据实际需要调整代码,并确保正确设置输入形状和输出层的激活函数等。
阅读全文