BN-Inception的代码
时间: 2023-07-10 19:13:02 浏览: 96
weights-inception-2015-12-05-6726825d.pth
以下是BN-Inception的代码示例,供参考:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Dense, Flatten, Input, concatenate, Dropout, BatchNormalization
def inception_module(x, filters):
f1, f3r, f3, f5r, f5, fpp = filters
conv1 = Conv2D(f1, (1, 1), padding='same', activation='relu')(x)
conv3r = Conv2D(f3r, (1, 1), padding='same', activation='relu')(x)
conv3 = Conv2D(f3, (3, 3), padding='same', activation='relu')(conv3r)
conv5r = Conv2D(f5r, (1, 1), padding='same', activation='relu')(x)
conv5 = Conv2D(f5, (5, 5), padding='same', activation='relu')(conv5r)
pool = MaxPooling2D((3, 3), strides=(1, 1), padding='same')(x)
convpp = Conv2D(fpp, (1, 1), padding='same', activation='relu')(pool)
output = concatenate([conv1, conv3, conv5, convpp], axis=-1)
return output
def BN_Inception():
input_layer = Input(shape=(224, 224, 3))
x = Conv2D(64, (7, 7), strides=(2, 2), padding='same', activation='relu')(input_layer)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
x = BatchNormalization()(x)
x = Conv2D(64, (1, 1), padding='same', activation='relu')(x)
x = Conv2D(192, (3, 3), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
x = inception_module(x, [64, 96, 128, 16, 32, 32])
x = inception_module(x, [128, 128, 192, 32, 96, 64])
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
x = inception_module(x, [192, 96, 208, 16, 48, 64])
x = inception_module(x, [160, 112, 224, 24, 64, 64])
x = inception_module(x, [128, 128, 256, 24, 64, 64])
x = inception_module(x, [112, 144, 288, 32, 64, 64])
x = inception_module(x, [256, 160, 320, 32, 128, 128])
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
x = inception_module(x, [256, 160, 320, 32, 128, 128])
x = inception_module(x, [384, 192, 384, 48, 128, 128])
x = AveragePooling2D((7, 7))(x)
x = Flatten()(x)
x = Dropout(0.4)(x)
output_layer = Dense(1000, activation='softmax')(x)
model = tf.keras.Model(inputs=input_layer, outputs=output_layer)
return model
```
以上代码实现了BN-Inception的网络结构,包含多个Inception模块和批量归一化层。其中,inception_module()函数实现了Inception模块的结构,BN_Inception()函数则定义了整个网络的结构,包括输入层、多个Inception模块、输出层等。
阅读全文