def __init__(self, downsample_factor=8, pretrained=True):
时间: 2023-10-07 11:08:41 浏览: 90
这是一个 PyTorch 中的类构造函数,用于初始化 MobileNetV2 类的对象。该函数包含两个可选参数:downsample_factor 和 pretrained。
downsample_factor 控制最后一层卷积的下采样倍数,可以选择 8 或 16,默认值为 8。
pretrained 控制是否使用预训练的权重,可以选择 True 或 False,默认为 True,即使用预训练权重。
该函数的作用是为 MobileNetV2 类创建一个对象,并初始化该对象的属性值。这些属性值可以在对象的生命周期中使用,并且可以通过访问属性来获取它们的值。
相关问题
class MobileNetV2(nn.Module): def __init__(self, downsample_factor=8, pretrained=True): super(MobileNetV2, self).__init__() from functools import partial model = mobilenetv2(pretrained) self.features = model.features[:-1] self.total_idx = len(self.features) self.down_idx = [2, 4, 7, 14] if downsample_factor == 8: for i in range(self.down_idx[-2], self.down_idx[-1]): self.features[i].apply( partial(self._nostride_dilate, dilate=2) ) for i in range(self.down_idx[-1], self.total_idx): self.features[i].apply( partial(self._nostride_dilate, dilate=4) ) elif downsample_factor == 16: for i in range(self.down_idx[-1], self.total_idx): self.features[i].apply( partial(self._nostride_dilate, dilate=2) ) def _nostride_dilate(self, m, dilate): classname = m.__class__.__name__ if classname.find('Conv') != -1: if m.stride == (2, 2): m.stride = (1, 1) if m.kernel_size == (3, 3): m.dilation = (dilate // 2, dilate // 2) m.padding = (dilate // 2, dilate // 2) else: if m.kernel_size == (3, 3): m.dilation = (dilate, dilate) m.padding = (dilate, dilate)
这是一个使用 PyTorch 实现的 MobileNetV2 模型。MobileNetV2 是一种轻量级的卷积神经网络,适用于移动设备和嵌入式设备等资源受限的环境。
该模型的构造函数中有两个参数:downsample_factor 和 pretrained。downsample_factor 控制最后一层卷积的下采样倍数,可以选择 8 或 16。pretrained 控制是否使用预训练的权重。
该模型使用了 MobileNetV2 的预训练模型作为基础模型,然后通过修改其中的一些层来适应不同的下采样倍数。具体来说,它通过将一些卷积层的步幅从 2 改为 1,并在这些层上应用不同的膨胀率来实现下采样倍数的调整。
_nostride_dilate 是一个辅助函数,用于在不改变卷积层大小的情况下增大感受野。它通过在卷积核周围填充一些像素来实现膨胀卷积。
总体来说,这个 MobileNetV2 模型是一个轻量级的卷积神经网络,适用于在资源受限的环境中进行图像分类等任务。
# New module: utils.pyimport torchfrom torch import nnclass ConvBlock(nn.Module): """A convolutional block consisting of a convolution layer, batch normalization layer, and ReLU activation.""" def __init__(self, in_chans, out_chans, drop_prob): super().__init__() self.conv = nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_chans) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout2d(p=drop_prob) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.dropout(x) return x# Refactored U-Net modelfrom torch import nnfrom utils import ConvBlockclass UnetModel(nn.Module): """PyTorch implementation of a U-Net model.""" def __init__(self, in_chans, out_chans, chans, num_pool_layers, drop_prob, pu_args=None): super().__init__() PUPS.__init__(self, *pu_args) self.in_chans = in_chans self.out_chans = out_chans self.chans = chans self.num_pool_layers = num_pool_layers self.drop_prob = drop_prob # Calculate input and output channels for each ConvBlock ch_list = [chans] + [chans * 2 ** i for i in range(num_pool_layers - 1)] in_chans_list = [in_chans] + [ch_list[i] for i in range(num_pool_layers - 1)] out_chans_list = ch_list[::-1] # Create down-sampling layers self.down_sample_layers = nn.ModuleList() for i in range(num_pool_layers): self.down_sample_layers.append(ConvBlock(in_chans_list[i], out_chans_list[i], drop_prob)) # Create up-sampling layers self.up_sample_layers = nn.ModuleList() for i in range(num_pool_layers - 1): self.up_sample_layers.append(ConvBlock(out_chans_list[i], out_chans_list[i + 1] // 2, drop_prob)) self.up_sample_layers.append(ConvBlock(out_chans_list[-1], out_chans_list[-1], drop_prob)) # Create final convolution layer self.conv2 = nn.Sequential( nn.Conv2d(out_chans_list[-1], out_chans_list[-1] // 2, kernel_size=1), nn.Conv2d(out_chans_list[-1] // 2, out_chans, kernel_size=1), nn.Conv2d(out_chans, out_chans, kernel_size=1), ) def forward(self, x): # Down-sampling path encoder_outs = [] for layer in self.down_sample_layers: x = layer(x) encoder_outs.append(x) x = nn.MaxPool2d(kernel_size=2)(x) # Bottom layer x = self.conv(x) # Up-sampling path for i, layer in enumerate(self.up_sample_layers): x = nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) x = torch.cat([x, encoder_outs[-(i + 1)]], dim=1) x = layer(x) # Final convolution layer x = self.conv2(x) return x
这里给出了一个 PyTorch 实现的 U-Net 模型,并且对代码进行了重构:
1. 将 ConvBlock 提取到了 utils.py 中,以便在 U-Net 中复用。
2. 在 U-Net 模型的 forward 方法中,使用了 ModuleList 对 down-sampling 和 up-sampling 层进行了封装,使得代码更加简洁和易于扩展。
3. 使用了 nn.functional.interpolate 对 feature map 进行了上采样,避免了使用 nn.ConvTranspose2d 带来的一些问题。
4. 在最后的卷积层中,使用了 nn.Sequential 对多个卷积层进行了封装,使得代码更加简洁。
这些重构都是为了提高代码的可读性、可维护性和可扩展性,使得代码更加清晰,易于理解和修改。
阅读全文