void sub_3EC74F(void) { if( addr_0x9a91.bit8 == 0 ){ addr_0x97dc.bit12 = 1; if( addr_0x9a91.bit5 == 1 ){ if( ++addr_0x9ab1 > 1800 ){ addr_0x9a95.bit14 = 1;} if( addr_0x9ab1 >= 2000 ){ addr_0x9ab1 = 2000; addr_0x97dc.bit12 = 0; addr_0x9a91.bit8 = 1;} } if( addr_0x9a91.bit4 == 1 ){ addr_0x991f = 147; addr_0x9914 = 10 * addr_0x9730.bit1_5 + 100 ; addr_0x9915.all = addr_0x9730.bit6_8; if( addr_0x9730.bit6_8 != 0b001 ){ if( ++addr_0x9ab2 >= 100 ){ addr_0x9ab2=100; addr_0x978d.bit4 = 1; } }else{ if( --addr_0x9ab2 <= 0 ){ addr_0x9ab2=0; addr_0x978d.bit4 = 0; } } if( addr_0x9a6d != 21845 ){ addr_0x978d.bit3 = 1; }else{ addr_0x978d.bit3 = 0; } } } if(addr_0x9a91.bit8 == 1 && addr_0x978d.bit3 == 0 && addr_0x978d.bit4 == 0 && addr_0x978d.bit5 == 0){ addr_0x9a91.bit13 = 1; }else{ addr_0x9a91.bit13 = 0; } if( addr_0x9a42.bit1 == 1 ){ addr_0x9ab3=0; addr_0x9a91.bit12 = 0; if(addr_0x9a91.bit5 == 1 && addr_0x9ab0 > 200){ addr_0x9ab0 = 200; addr_0x9a91.bit10 = 1; } }else{ addr_0x9ab0 = 0; addr_0x9a91.bit10 = 0; if( addr_0x9a91.bit7 == 1 ){ if( ++addr_0x9ab3 > 1000 ){ addr_0x9ab3=1000; addr_0x9a91.bit12 = 1; } } } }这段代码可以优化吗编译
时间: 2024-04-03 19:32:32 浏览: 93
这段代码的优化需要结合具体的应用场景和需求来考虑,但是可以提供一些常见的优化建议:
1. 使用位运算代替逻辑运算,如使用按位与(&)和按位或(|)代替逻辑与(&&)和逻辑或(||)。
2. 避免使用重复的计算,可以通过引入中间变量等方式来避免。
3. 尽可能使用基本类型代替结构体或类等复杂类型,以减少内存占用和操作开销。
4. 使用函数封装重复的代码,以提高代码复用性和可读性。
5. 避免使用魔法数(Magic Number),使用常量或枚举来代替。
相关问题
union Uint16_BIT_STRUCT { Uint16 all; struct { Uint16 bit1:1; Uint16 bit2:1; Uint16 bit3:1; Uint16 bit4:1; Uint16 bit5:1; Uint16 bit6:1; Uint16 bit7:1; Uint16 bit8:1; Uint16 bit9:1; Uint16 bit10:1; Uint16 bit11:1; Uint16 bit12:1; Uint16 bit13:1; Uint16 bit14:1; Uint16 bit15:1; Uint16 bit16:1; }; struct { Uint16 bit1_3: 3; // Uint16 bit4_16: 13;// }; struct { Uint16 bit1_5: 5; Uint16 bit6_8: 3;// Uint16 bit_9: 1; 可以优化吗Uint16 bit10_11: 2; Uint16 bit12_13: 2; Uint16 bit14_16: 3; }; }; union Uint16_BIT_STRUCT addr_0x9730; union Uint16_BIT_STRUCT addr_0x978d; union Uint16_BIT_STRUCT addr_0x97dc; int16 addr_0x9914; union Uint16_BIT_STRUCT addr_0x9915; int16 addr_0x991f; union Uint16_BIT_STRUCT addr_0x9a42; int16 addr_0x9a6d; extern union Uint16_BIT_STRUCT addr_0x9a91; union Uint16_BIT_STRUCT addr_0x9a95; int16 addr_0x9ab0; int16 addr_0x9ab1; int16 addr_0x9ab2; int16 addr_0x9ab3; void sub_3EC74F(void) { if( addr_0x9a91.bit8 == 0 ){ addr_0x97dc.bit12 = 1; if( addr_0x9a91.bit5 == 1 ){ if( ++addr_0x9ab1 > 1800 ){ addr_0x9a95.bit14 = 1;} if( addr_0x9ab1 >= 2000 ){ addr_0x9ab1 = 2000; addr_0x97dc.bit12 = 0; addr_0x9a91.bit8 = 1;} } if( addr_0x9a91.bit4 == 1 ){ addr_0x991f = 147; addr_0x9914 = 10 * addr_0x9730.bit1_5 + 100 ; addr_0x9915.all = addr_0x9730.bit6_8; if( addr_0x9730.bit6_8 != 0b001 ){ if( ++addr_0x9ab2 >= 100 ){ addr_0x9ab2=100; addr_0x978d.bit4 = 1; } }else{ if( --addr_0x9ab2 <= 0 ){ addr_0x9ab2=0; addr_0x978d.bit4 = 0; } } if( addr_0x9a6d != 21845 ){ addr_0x978d.bit3 = 1; }else{ addr_0x978d.bit3 = 0; } } } if(addr_0x9a91.bit8 == 1 && addr_0x978d.bit3 == 0 && addr_0x978d.bit4 == 0 && addr_0x978d.bit5 == 0){ addr_0x9a91.bit13 = 1; }else{ addr_0x9a91.bit13 = 0; } if( addr_0x9a42.bit1 == 1 ){ addr_0x9ab3=0; addr_0x9a91.bit12 = 0; if(addr_0x9a91.bit5 == 1 && addr_0x9ab0 > 200){ addr_0x9ab0 = 200; addr_0x9a91.bit10 = 1; } }else{ addr_0x9ab0 = 0; addr_0x9a91.bit10 = 0; if( addr_0x9a91.bit7 == 1 ){ if( ++addr_0x9ab3 > 1000 ){ addr_0x9ab3=1000; addr_0x9a91.bit12 = 1; } } } }
这段代码中的联合体定义可以进行优化,例如可以将 `bit1_3` 和 `bit4_16` 合并为一个字段,将 `bit1_5`、`bit6_8`、`bit9`、`bit10_11`、`bit12_13` 和 `bit14_16` 合并为另一个字段。这样可以减少内存空间的使用,同时也可以简化代码。
此外,这段代码中可能存在一些潜在的问题,例如没有对变量进行初始化,有些变量可能会出现未定义的值,需要进行处理。此外,函数中存在一些奇怪的逻辑,需要对代码进行分析和理解。
MOVB @_addr_0x991f,#147,UNC ;此处并没有具体跳转位置,c语言代码为 if( addr_0x9a91.bit4 == 1 ){ addr_0x991f = 147; addr_0x9914 = 10 * addr_0x9730.bit1_5 + 100 ; addr_0x9915.bit1_3 = addr_0x9730.bit6_8; addr_0x9915.bit4_16= 0;}为何编译时出现UNC
UNC并不是一个实际的跳转地址,它只是一个占位符,用于标记汇编代码中的跳转目标位置。在你提供的C语言代码中,没有直接对UNC进行赋值或跳转操作。UNC可能是由汇编器自动生成的标签,用于在汇编代码中标记未来可能的跳转位置。当C语言代码被编译成汇编代码时,汇编器会根据C语言代码的语义和上下文信息生成汇编代码,并自动为跳转目标位置生成标签。因此,UNC可能是由汇编器自动生成的标签,而不是由C语言代码直接指定的跳转目标。
阅读全文