欧几里得算法时间复杂度
时间: 2023-10-29 12:22:21 浏览: 175
时间复杂度续-算法与程序
欧几里得算法,也称为辗转相除法,用于计算两个非负整数的最大公约数(GCD)。算法的时间复杂度取决于输入的大小。
在最坏情况下,即给定两个数 a 和 b,其中 a > b,算法的时间复杂度可以近似地表示为 O(log b)。这个复杂度是根据辗转相除法的递归性质得出的。
具体来说,每次迭代中,算法将较大的数除以较小的数,并用余数取代原先的较大数。这样的迭代会在最多 log b 次后结束,因为每次迭代都会将问题的规模减小一半。
需要注意的是,这个时间复杂度是基于输入数据的二进制表示而言的。如果输入是以十进制或其他进制表示的话,时间复杂度可能会略有不同。但总体上,欧几里得算法的时间复杂度都很高效,因为它的迭代次数与输入数据的大小无关。
阅读全文