用Java实现Input The first line contains the integer numbers N (2 ≤ N ≤ 500) and M (0 ≤ M ≤ 124750). Each of the next M lines contains the integer numbers A[i], B[i] (1 ≤ A[i], B[i] ≤ N) and C[i] (1 ≤ C[i] ≤ 10000) for the corresponding pipeline. The last line contains the integer numbers S and F (1 ≤ S, F ≤ N; S ≠ F). Output If the desired route exists, you should output its profitability. Otherwise you should output "No solution".

时间: 2024-03-03 15:47:47 浏览: 132
以下是Java代码实现: ```java import java.util.*; public class Pipeline { static int N, M; static int[] dist; static boolean[] visited; static List<Edge>[] graph; public static void main(String[] args) { Scanner sc = new Scanner(System.in); N = sc.nextInt(); M = sc.nextInt(); dist = new int[N + 1]; visited = new boolean[N + 1]; graph = new List[N + 1]; for (int i = 1; i <= N; i++) { graph[i] = new ArrayList<>(); } for (int i = 0; i < M; i++) { int a = sc.nextInt(); int b = sc.nextInt(); int c = sc.nextInt(); graph[a].add(new Edge(b, c)); graph[b].add(new Edge(a, c)); } int start = sc.nextInt(); int end = sc.nextInt(); int res = dijkstra(start, end); if (res == Integer.MAX_VALUE) { System.out.println("No solution"); } else { System.out.println(res); } } private static int dijkstra(int start, int end) { Arrays.fill(dist, Integer.MAX_VALUE); dist[start] = 0; PriorityQueue<Node> pq = new PriorityQueue<>(); pq.offer(new Node(start, 0)); while (!pq.isEmpty()) { Node curr = pq.poll(); int u = curr.vertex; if (visited[u]) { continue; } visited[u] = true; if (u == end) { return dist[end]; } for (Edge edge : graph[u]) { int v = edge.to; int w = edge.weight; if (!visited[v] && dist[u] != Integer.MAX_VALUE && dist[u] + w < dist[v]) { dist[v] = dist[u] + w; pq.offer(new Node(v, dist[v])); } } } return Integer.MAX_VALUE; } } class Node implements Comparable<Node> { int vertex; int dist; public Node(int vertex, int dist) { this.vertex = vertex; this.dist = dist; } @Override public int compareTo(Node o) { return this.dist - o.dist; } } class Edge { int to; int weight; public Edge(int to, int weight) { this.to = to; this.weight = weight; } } ``` 该程序输入包括两个整数N和M,表示有N个节点和M条边。接下来的M行包含A[i]、B[i]和C[i],表示第i条边连接节点A[i]和B[i],边的权重为C[i]。最后一行包含S和F,表示起点和终点。 程序使用了Dijkstra算法求解最短路径问题,采用了优先队列来实现。首先建立一个邻接表来存储图中每个节点的出边,然后初始化起点到所有节点的距离为无穷大,起点的距离为0。将起点加入优先队列中,每次从队列中取出距离起点最近的节点u,对u的所有出边进行松弛操作,即更新到与u相邻的节点v的距离,如果发现更优的路径则更新距离并将v加入优先队列中。重复上述操作直到队列为空或终点被访问到。如果终点被访问到了,则返回起点到终点的最短距离,否则返回无穷大表示不存在路径。最后根据返回值输出结果。
阅读全文

相关推荐

用c++解决pipeline system consists of N transfer station, some of which are connected by pipelines. For each of M pipelines the numbers of stations A[i] and B[i], which are connected by this pipeline, and its profitability C[i] are known. A profitability of a pipeline is an amount of dollars, which will be daily yielded in taxes by transferring the gas through this pipeline. Each two stations are connected by not more than one pipeline. The system was built by Soviet engineers, who knew exactly, that the gas was transferred from Ukrainian gas fields to Siberia and not the reverse. That is why the pipelines are unidirectional, i.e. each pipeline allows gas transfer from the station number A[i] to the station number B[i] only. More over, if it is possible to transfer the gas from the station X to the station Y (perhaps, through some intermediate stations), then the reverse transfer from Y to X is impossible. It is known that the gas arrives to the starting station number S and should be dispatched to the buyers on the final station number F. The President ordered the Government to find a route (i.e. a linear sequence of stations which are connected by pipelines) to transfer the gas from the starting to the final station. A profitability of this route should be maximal. A profitability of a route is a total profitability of its pipelines. Unfortunately, the President did not consider that some pipelines ceased to exist long ago, and, as a result, the gas transfer between the starting and the final stations may appear to be impossible... Input The first line contains the integer numbers N (2 ≤ N ≤ 500) and M (0 ≤ M ≤ 124750). Each of the next M lines contains the integer numbers A[i], B[i] (1 ≤ A[i], B[i] ≤ N) and C[i] (1 ≤ C[i] ≤ 10000) for the corresponding pipeline. The last line contains the integer numbers S and F (1 ≤ S, F ≤ N; S ≠ F). Output If the desired route exists, you should output its profitability. Otherwise you should output "No solution".

用C语言解决下列问题:Kirill wants to weave the very beautiful blanket consisting of n×m of the same size square patches of some colors. He matched some non-negative integer to each color. Thus, in our problem, the blanket can be considered a B matrix of size n×m consisting of non-negative integers. Kirill considers that the blanket is very beautiful, if for each submatrix A of size 4×4 of the matrix B is true: A11⊕A12⊕A21⊕A22=A33⊕A34⊕A43⊕A44, A13⊕A14⊕A23⊕A24=A31⊕A32⊕A41⊕A42, where ⊕ means bitwise exclusive OR Kirill asks you to help her weave a very beautiful blanket, and as colorful as possible! He gives you two integers n and m . Your task is to generate a matrix B of size n×m , which corresponds to a very beautiful blanket and in which the number of different numbers maximized. Input The first line of input data contains one integer number t (1≤t≤1000 ) — the number of test cases. The single line of each test case contains two integers n and m (4≤n,m≤200) — the size of matrix B . It is guaranteed that the sum of n⋅m does not exceed 2⋅105 . Output For each test case, in first line output one integer cnt (1≤cnt≤n⋅m) — the maximum number of different numbers in the matrix. Then output the matrix B (0≤Bij<263) of size n×m . If there are several correct matrices, it is allowed to output any one. It can be shown that if there exists a matrix with an optimal number of distinct numbers, then there exists among suitable matrices such a B that (0≤Bij<263) .

请用代码实现C1. Powering the Hero (easy version) time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard output This is an easy version of the problem. It differs from the hard one only by constraints on n and t . There is a deck of n cards, each of which is characterized by its power. There are two types of cards: a hero card, the power of such a card is always equal to 0 ; a bonus card, the power of such a card is always positive. You can do the following with the deck: take a card from the top of the deck; if this card is a bonus card, you can put it on top of your bonus deck or discard; if this card is a hero card, then the power of the top card from your bonus deck is added to his power (if it is not empty), after that the hero is added to your army, and the used bonus discards. Your task is to use such actions to gather an army with the maximum possible total power. Input The first line of input data contains single integer t (1≤t≤1000 ) — the number of test cases in the test. The first line of each test case contains one integer n (1≤n≤5000 ) — the number of cards in the deck. The second line of each test case contains n integers s1,s2,…,sn (0≤si≤109 ) — card powers in top-down order. It is guaranteed that the sum of n over all test cases does not exceed 5000 . Output Output t numbers, each of which is the answer to the corresponding test case — the maximum possible total power of the army that can be achieved.

用c++解决You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. Input The first line contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1 ≤ S ≤ N ≤ 100, 1 ≤ M ≤ 100, V is real number, 0 ≤ V ≤ 103. For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2 ≤ rate ≤ 102, 0 ≤ commission ≤ 102. Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104. Output If Nick can increase his wealth, output YES, in other case output NO.

用c++解决Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem - not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. Input The first line contains two integer: N - the number of hubs in the network (2 ≤ N ≤ 1000) and M — the number of possible hub connections (1 ≤ M ≤ 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs. Output Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

最新推荐

recommend-type

Google C++ Style Guide(Google C++编程规范)高清PDF

Length Arrays and alloca() Friends Exceptions Run-Time Type Information (RTTI) Casting Streams Preincrement and Predecrement Use of const Integer Types 64-bit Portability Preprocessor Macros 0 and ...
recommend-type

【超强组合】基于VMD-星雀优化算法NOA-Transformer-BiLSTM的光伏预测算研究Matlab实现.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 替换数据可以直接使用,注释清楚,适合新手
recommend-type

【java毕业设计】高校四六级报名管理系统源码(ssm+jsp+mysql+说明文档+LW).zip

功能说明: 高校四六级报名管理系统的主要使用者分为管理员和学生,实现功能包括管理员:个人中心、学生管理、四六级报名管理、报名记录管理、准考记录管理、身份证认证管理、系统管理,学生:个人中心、报名记录管理、准考记录管理、身份证认证管理,前台首页;首页、四六级报名、新闻资讯、我的、跳转到后台、在线客服等功能。 环境说明: 开发语言:java 框架:ssm jdk版本:jdk1.8 数据库:mysql 5.7+ 数据库工具:Navicat11+ 管理工具:maven 开发工具:idea/eclipse 部署容器:tomcat7+
recommend-type

【超强组合】基于VMD-飞蛾扑火优化算法MFO-Transformer-LSTM的光伏预测算研究Matlab实现.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 替换数据可以直接使用,注释清楚,适合新手
recommend-type

【java毕业设计】水果销售管理网站源码(ssm+jsp+mysql+说明文档+LW).zip

功能说明: 水果销售管理网站 的主要使用者分为管理员:主页、个人中心、用户管理、水果信息管理、水果类别管理、销售单位管理、水果销售分析管理、会员分析管理、系统管理、订单管理,用户前台;首页、水果信息、新闻资讯、我的、跳转到后台、购物车等功能。 环境说明: 开发语言:java 框架:ssm jdk版本:jdk1.8 数据库:mysql 5.7+ 数据库工具:Navicat11+ 管理工具:maven 开发工具:idea/eclipse 部署容器:tomcat7+
recommend-type

探索数据转换实验平台在设备装置中的应用

资源摘要信息:"一种数据转换实验平台" 数据转换实验平台是一种专门用于实验和研究数据转换技术的设备装置,它能够帮助研究者或技术人员在模拟或实际的工作环境中测试和优化数据转换过程。数据转换是指将数据从一种格式、类型或系统转换为另一种,这个过程在信息科技领域中极其重要,尤其是在涉及不同系统集成、数据迁移、数据备份与恢复、以及数据分析等场景中。 在深入探讨一种数据转换实验平台之前,有必要先了解数据转换的基本概念。数据转换通常包括以下几个方面: 1. 数据格式转换:将数据从一种格式转换为另一种,比如将文档从PDF格式转换为Word格式,或者将音频文件从MP3格式转换为WAV格式。 2. 数据类型转换:涉及数据类型的改变,例如将字符串转换为整数,或者将日期时间格式从一种标准转换为另一种。 3. 系统间数据转换:在不同的计算机系统或软件平台之间进行数据交换时,往往需要将数据从一个系统的数据结构转换为另一个系统的数据结构。 4. 数据编码转换:涉及到数据的字符编码或编码格式的变化,例如从UTF-8编码转换为GBK编码。 针对这些不同的转换需求,一种数据转换实验平台应具备以下特点和功能: 1. 支持多种数据格式:实验平台应支持广泛的数据格式,包括但不限于文本、图像、音频、视频、数据库文件等。 2. 可配置的转换规则:用户可以根据需要定义和修改数据转换的规则,包括正则表达式、映射表、函数脚本等。 3. 高度兼容性:平台需要兼容不同的操作系统和硬件平台,确保数据转换的可行性。 4. 实时监控与日志记录:实验平台应提供实时数据转换监控界面,并记录转换过程中的关键信息,便于调试和分析。 5. 测试与验证机制:提供数据校验工具,确保转换后的数据完整性和准确性。 6. 用户友好界面:为了方便非专业人员使用,平台应提供简洁直观的操作界面,降低使用门槛。 7. 强大的扩展性:平台设计时应考虑到未来可能的技术更新或格式标准变更,需要具备良好的可扩展性。 具体到所给文件中的"一种数据转换实验平台.pdf",它应该是一份详细描述该实验平台的设计理念、架构、实现方法、功能特性以及使用案例等内容的文档。文档中可能会包含以下几个方面的详细信息: - 实验平台的设计背景与目的:解释为什么需要这样一个数据转换实验平台,以及它预期解决的问题。 - 系统架构和技术选型:介绍实验平台的系统架构设计,包括软件架构、硬件配置以及所用技术栈。 - 核心功能与工作流程:详细说明平台的核心功能模块,以及数据转换的工作流程。 - 使用案例与操作手册:提供实际使用场景下的案例分析,以及用户如何操作该平台的步骤说明。 - 测试结果与效能分析:展示平台在实际运行中的测试结果,包括性能测试、稳定性测试等,并进行效能分析。 - 问题解决方案与未来展望:讨论在开发和使用过程中遇到的问题及其解决方案,以及对未来技术发展趋势的展望。 通过这份文档,开发者、测试工程师以及研究人员可以获得对数据转换实验平台的深入理解和实用指导,这对于产品的设计、开发和应用都具有重要价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

ggflags包的国际化问题:多语言标签处理与显示的权威指南

![ggflags包的国际化问题:多语言标签处理与显示的权威指南](https://www.verbolabs.com/wp-content/uploads/2022/11/Benefits-of-Software-Localization-1024x576.png) # 1. ggflags包介绍及国际化问题概述 在当今多元化的互联网世界中,提供一个多语言的应用界面已经成为了国际化软件开发的基础。ggflags包作为Go语言中处理多语言标签的热门工具,不仅简化了国际化流程,还提高了软件的可扩展性和维护性。本章将介绍ggflags包的基础知识,并概述国际化问题的背景与重要性。 ## 1.1
recommend-type

如何使用MATLAB实现电力系统潮流计算中的节点导纳矩阵构建和阻抗矩阵转换,并解释这两种矩阵在潮流计算中的作用和差异?

在电力系统的潮流计算中,MATLAB提供了一个强大的平台来构建节点导纳矩阵和进行阻抗矩阵转换,这对于确保计算的准确性和效率至关重要。首先,节点导纳矩阵是电力系统潮流计算的基础,它表示系统中所有节点之间的电气关系。在MATLAB中,可以通过定义各支路的导纳值并将它们组合成矩阵来构建节点导纳矩阵。具体操作包括建立各节点的自导纳和互导纳,以及考虑变压器分接头和线路的参数等因素。 参考资源链接:[电力系统潮流计算:MATLAB程序设计解析](https://wenku.csdn.net/doc/89x0jbvyav?spm=1055.2569.3001.10343) 接下来,阻抗矩阵转换是
recommend-type

使用git-log-to-tikz.py将Git日志转换为TIKZ图形

资源摘要信息:"git-log-to-tikz.py 是一个使用 Python 编写的脚本工具,它能够从 Git 版本控制系统中的存储库生成用于 TeX 文档的 TIkZ 图。TIkZ 是一个用于在 LaTeX 文档中创建图形的包,它是 pgf(portable graphics format)库的前端,广泛用于创建高质量的矢量图形,尤其适合绘制流程图、树状图、网络图等。 此脚本基于 Michael Hauspie 的原始作品进行了更新和重写。它利用了 Jinja2 模板引擎来处理模板逻辑,这使得脚本更加灵活,易于对输出的 TeX 代码进行个性化定制。通过使用 Jinja2,脚本可以接受参数,并根据参数输出不同的图形样式。 在使用该脚本时,用户可以通过命令行参数指定要分析的 Git 分支。脚本会从当前 Git 存储库中提取所指定分支的提交历史,并将其转换为一个TIkZ图形。默认情况下,脚本会将每个提交作为 TIkZ 的一个节点绘制,同时显示提交间的父子关系,形成一个树状结构。 描述中提到的命令行示例: ```bash git-log-to-tikz.py master feature-branch > repository-snapshot.tex ``` 这个命令会将 master 分支和 feature-branch 分支的提交日志状态输出到名为 'repository-snapshot.tex' 的文件中。输出的 TeX 代码使用TIkZ包定义了一个 tikzpicture 环境,该环境可以被 LaTeX 编译器处理,并在最终生成的文档中渲染出相应的图形。在这个例子中,master 分支被用作主分支,所有回溯到版本库根的提交都会包含在生成的图形中,而并行分支上的提交则会根据它们的时间顺序交错显示。 脚本还提供了一个可选参数 `--maketest`,通过该参数可以执行额外的测试流程,但具体的使用方法和效果在描述中没有详细说明。一般情况下,使用这个参数是为了验证脚本的功能或对脚本进行测试。 此外,Makefile 中提供了调用此脚本的示例,说明了如何在自动化构建过程中集成该脚本,以便于快速生成所需的 TeX 图形文件。 此脚本的更新版本允许用户通过少量参数对生成的图形进行控制,包括但不限于图形的大小、颜色、标签等。这为用户提供了更高的自定义空间,以适应不同的文档需求和审美标准。 在使用 git-log-to-tikz.py 脚本时,用户需要具备一定的 Python 编程知识,以理解和操作 Jinja2 模板,并且需要熟悉 Git 和 TIkZ 的基本使用方法。对于那些不熟悉命令行操作的用户,可能需要一些基础的学习来熟练掌握该脚本的使用。 最后,虽然文件名称列表中只列出了 'git-log-to-tikz.py-master' 这一个文件,但根据描述,该脚本应能支持检查任意数量的分支,并且在输出的 TeX 文件中使用 `tikzset` 宏来轻松地重新设置图形的样式。这表明脚本具有较好的扩展性和灵活性。"