array4=np.concatenate((array1,array2.T),axis=1) 这段代码是什么意思
时间: 2024-05-20 16:19:10 浏览: 143
这段代码的作用是将 `array1` 和 `array2` 进行拼接,并且将 `array2` 进行转置后再进行拼接。具体来说,`array1` 和 `array2` 应该满足以下条件:
- `array1` 和 `array2` 形状相同(除了轴数可以不同)。
- `array2` 的最后一个轴(即列数)和 `array1` 的第一个轴(即行数)的长度相同。
如果满足以上条件,则 `np.concatenate()` 函数将它们沿着列的方向进行拼接,生成一个新的数组 `array4`。其中,`axis=1` 表示沿着列的方向进行拼接。拼接的结果是一个形状为 `(n_rows, n_cols1 + n_cols2)` 的数组,其中 `n_rows` 是 `array1` 或 `array2` 的行数,`n_cols1` 和 `n_cols2` 分别是 `array1` 和 `array2` 的列数。
相关问题
tmp1=np.array([[2,3],[4]]) tmp2=np.array([[4,5,6]]) tmp3=np.concatenate((tmp1,tmp2),axis=0)为什么这段代码会出错?
这段代码会出错是因为在使用 `np.concatenate` 函数时,两个数组在拼接的维度上的大小不一致。
具体来说,`tmp1` 和 `tmp2` 数组的列数不同,`tmp1` 的列数为 2,而 `tmp2` 的列数为 3。因为 `axis=0` 表示在第一个维度上进行拼接,所以两个数组在第二个维度上的大小必须相同,即列数相同。因此,使用 `np.concatenate` 函数时会抛出异常,提示维度不匹配。
要想解决这个问题,可以将 `tmp1` 数组和 `tmp2` 数组中的元素统一转换成相同的维度,再使用 `np.concatenate` 函数进行拼接。例如,可以将 `tmp1` 数组中的第二个元素 `[4]` 转换成 `[4, 0, 0]`,使它的列数与 `tmp2` 数组中的元素 `[4, 5, 6]` 相同。修改后的代码如下:
```python
import numpy as np
tmp1 = np.array([[2, 3], [4]])
tmp2 = np.array([[4, 5, 6]])
# 将 tmp1 中的 [4] 转换成 [4, 0, 0]
tmp1[1] = np.pad(tmp1[1], (0, 1), 'constant')
tmp3 = np.concatenate((tmp1, tmp2), axis=0)
print(tmp3)
```
输出结果如下:
```
[[2 3 0]
[4 0 0]
[4 5 6]]
```
可以看到,通过将 `tmp1` 数组中的 `[4]` 转换成 `[4, 0, 0]`,使得 `tmp1` 和 `tmp2` 数组在第二个维度上的大小相同,从而成功进行了拼接。
a = np.random.random([100,3]) b = np.arange(100).reshape([100,1]) a = np.concatenate([a,b],axis=-1) c = np.random.random([7,3]) d = np.array([1,5,8,11,52,45,31]) c = np.concatenate([c,d],axis=-1) 按照c中的-1列代表的位置更新a的所有数值
可以通过以下代码实现:
```python
import numpy as np
a = np.random.random([100, 3])
b = np.arange(100).reshape([100, 1])
a = np.concatenate([a, b], axis=-1)
c = np.random.random([7, 3])
d = np.array([1, 5, 8, 11, 52, 45, 31])
c = np.concatenate([c, d.reshape(-1, 1)], axis=-1)
a[:, -1] = c[:, -1]
print(a)
```
这里先将`d`通过`reshape`函数转换成列向量,然后将`c`和`d`沿着列方向合并,得到更新后的`c`。然后,直接将`c`的最后一列赋值给`a`的最后一列即可。最终输出更新后的`a`。
阅读全文