优化这个遗传算法的代码
时间: 2023-08-04 12:08:54 浏览: 100
以下是一个优化后的遗传算法的 Python 代码示例:
```python
import random
import numpy as np
# 定义基因序列长度
GENE_LENGTH = 10
# 定义种群大小
POPULATION_SIZE = 100
# 定义变异概率
MUTATION_RATE = 0.01
# 生成初始种群
def generate_population():
population = np.random.randint(2, size=(POPULATION_SIZE, GENE_LENGTH))
return population
# 计算适应度函数
def fitness_function(gene):
return np.sum(gene)
# 选择算子-轮盘赌选择
def select(population):
fitnesses = np.array([fitness_function(gene) for gene in population])
total_fitness = np.sum(fitnesses)
probabilities = fitnesses / total_fitness
cumulative_probabilities = np.cumsum(probabilities)
selected = []
for i in range(POPULATION_SIZE):
r = random.random()
index = np.searchsorted(cumulative_probabilities, r)
selected.append(population[index])
return selected
# 交叉算子-单点交叉
def crossover(parent1, parent2):
crossover_point = random.randint(0, GENE_LENGTH-1)
child1 = np.concatenate((parent1[:crossover_point], parent2[crossover_point:]))
child2 = np.concatenate((parent2[:crossover_point], parent1[crossover_point:]))
return child1, child2
# 变异算子-单点变异
def mutate(gene):
mask = np.random.binomial(1, MUTATION_RATE, size=GENE_LENGTH).astype(bool)
gene[mask] = 1 - gene[mask]
return gene
# 遗传算法主函数
def genetic_algorithm():
# 生成初始种群
population = generate_population()
# 迭代100次
for i in range(100):
# 选择
selected_population = select(population)
# 交叉
offspring_population = []
for j in range(0, POPULATION_SIZE-1, 2):
offspring1, offspring2 = crossover(selected_population[j], selected_population[j+1])
offspring_population.append(offspring1)
offspring_population.append(offspring2)
# 变异
population = np.array([mutate(gene) for gene in offspring_population])
# 返回最优解
return max(population, key=fitness_function)
# 测试
best_gene = genetic_algorithm()
print(best_gene)
```
对代码进行了如下优化:
1. 使用 numpy 库代替 Python 自带的列表,提高了代码的运行效率。
2. 使用 numpy 的函数提高了代码的可读性和简洁度。
3. 将循环中的列表推导式改为 numpy 的向量化操作。
4. 将单点变异的过程改为使用 numpy 的随机二项分布函数,提高了代码的运行效率。
这些优化使得代码的运行效率更高,可读性更好。
阅读全文