with open('tmp/kpts3ds_mengnan.pkl', 'rb') as f: body_keypoints = pickle.load(f)什么意思
时间: 2024-01-11 16:04:29 浏览: 162
这段代码是Python中用于读取二进制文件的语法。其中:
- `open('tmp/kpts3ds_mengnan.pkl', 'rb')`表示以二进制模式打开文件`tmp/kpts3ds_mengnan.pkl`,rb表示以二进制读取文件。
- `pickle.load(f)`则使用pickle模块将打开的文件反序列化为Python对象。具体来说,它会将二进制数据转换为原来的Python对象,因为在文件中存储的是被序列化后的Python对象。在这个例子中,读取的是名为`kpts3ds_mengnan.pkl`文件,其中包含了一个变量`body_keypoints`,该变量存储了人体关键点的坐标数据。
相关问题
E:\AI\live_mocap-master\tmp\kpts3ds_mengnan.pkl查看这个文件
要查看E:\AI\live_mocap-master\tmp\kpts3ds_mengnan.pkl文件中保存的Python对象内容,你可以使用如下代码:
```python
import pickle
# 读取pkl文件
with open("E:/AI/live_mocap-master/tmp/kpts3ds_mengnan.pkl", "rb") as f:
data = pickle.load(f)
# 查看Python对象内容
print(data)
```
这个示例代码中,我们使用Python的pickle模块读取E:\AI\live_mocap-master\tmp\kpts3ds_mengnan.pkl文件,并使用pickle.load()函数将文件中保存的Python对象加载到内存中。然后,我们使用print()函数来查看这个Python对象的内容。
需要注意的是,由于我无法访问你的本地文件系统,因此示例代码中的文件路径是根据你提供的路径进行推测的,如果路径不正确,你需要根据实际情况进行修改。
详细解释一下这段代码,每一句给出详细注解:for k in kpts.keys(): kpts[k] = np.round(np.concatenate(kpts[k], axis=0)) unique_kpts = {} unique_match_idxs = {} for k in kpts.keys(): uniq_kps, uniq_reverse_idxs = torch.unique(torch.from_numpy(kpts[k].astype(np.float32)), dim=0, return_inverse=True) unique_match_idxs[k] = uniq_reverse_idxs unique_kpts[k] = uniq_kps.numpy() with h5py.File(f"{feature_dir}/keypoints.h5", mode='w') as f_kp: for k, kpts1 in unique_kpts.items(): f_kp[k] = kpts1 out_match = defaultdict(dict) for k1, group in match_indexes.items(): for k2, m in group.items(): m2 = deepcopy(m) m2[:,0] = unique_match_idxs[k1][m2[:,0]] m2[:,1] = unique_match_idxs[k2][m2[:,1]] mkpts = np.concatenate([unique_kpts[k1][m2[:,0]], unique_kpts[k2][m2[:,1]]], axis=1) unique_idxs_current = get_unique_idxs(torch.from_numpy(mkpts), dim=0) m2_semiclean = m2[unique_idxs_current] unique_idxs_current1 = get_unique_idxs(m2_semiclean[:, 0], dim=0) m2_semiclean = m2_semiclean[unique_idxs_current1] unique_idxs_current2 = get_unique_idxs(m2_semiclean[:, 1], dim=0) m2_semiclean2 = m2_semiclean[unique_idxs_current2] out_match[k1][k2] = m2_semiclean2.numpy() with h5py.File(f"{feature_dir}/matches.h5", mode='w') as f_match: for k1, gr in out_match.items(): group = f_match.require_group(k1) for k2, match in gr.items(): group[k2] = match
这段代码实现了对关键点的处理和匹配,最终保存在文件中。具体的注释如下:
```python
# 对每个图像的关键点进行合并,并且四舍五入
for k in kpts.keys():
kpts[k] = np.round(np.concatenate(kpts[k], axis=0))
# 初始化两个字典
unique_kpts = {}
unique_match_idxs = {}
# 对于每个图像的关键点进行去重,得到unique_kpts和unique_match_idxs
for k in kpts.keys():
uniq_kps, uniq_reverse_idxs = torch.unique(torch.from_numpy(kpts[k].astype(np.float32)), dim=0, return_inverse=True)
unique_match_idxs[k] = uniq_reverse_idxs
unique_kpts[k] = uniq_kps.numpy()
# 将处理后的关键点和匹配结果写入到文件中
with h5py.File(f"{feature_dir}/keypoints.h5", mode='w') as f_kp:
for k, kpts1 in unique_kpts.items():
f_kp[k] = kpts1
out_match = defaultdict(dict)
for k1, group in match_indexes.items():
for k2, m in group.items():
# 处理匹配结果
m2 = deepcopy(m)
m2[:,0] = unique_match_idxs[k1][m2[:,0]]
m2[:,1] = unique_match_idxs[k2][m2[:,1]]
mkpts = np.concatenate([unique_kpts[k1][m2[:,0]], unique_kpts[k2][m2[:,1]]], axis=1)
unique_idxs_current = get_unique_idxs(torch.from_numpy(mkpts), dim=0)
m2_semiclean = m2[unique_idxs_current]
unique_idxs_current1 = get_unique_idxs(m2_semiclean[:, 0], dim=0)
m2_semiclean = m2_semiclean[unique_idxs_current1]
unique_idxs_current2 = get_unique_idxs(m2_semiclean[:, 1], dim=0)
m2_semiclean2 = m2_semiclean[unique_idxs_current2]
out_match[k1][k2] = m2_semiclean2.numpy()
# 将处理后的匹配结果写入到文件中
with h5py.File(f"{feature_dir}/matches.h5", mode='w') as f_match:
for k1, gr in out_match.items():
group = f_match.require_group(k1)
for k2, match in gr.items():
group[k2] = match
```
阅读全文