使用python编写朴素贝叶斯分类器要求实现1. 导入鸢尾花数据集; 2. 分别取三个类中每个类的40个样本作为训练集,10个样本作为测试集; 3. 计算每个类的概率密度函数,即每个类的样本均值与方差(假设样本特征数据满足高斯分布); 4. 将测试样本带入每个类的概率密度函数,并判断该样本属于哪个类别; 5. 计算精确率 ,召回率 ,F度量
时间: 2024-03-26 20:42:20 浏览: 93
好的,以下是使用 Python 编写朴素贝叶斯分类器的代码,满足您的要求:
```python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from scipy.stats import norm
import numpy as np
# 导入鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
# 分别取三个类中每个类的40个样本作为训练集,10个样本作为测试集
X_train_class0 = X[y==0][:40]
X_train_class1 = X[y==1][:40]
X_train_class2 = X[y==2][:40]
X_test_class0 = X[y==0][40:50]
X_test_class1 = X[y==1][40:50]
X_test_class2 = X[y==2][40:50]
X_train = np.concatenate((X_train_class0, X_train_class1, X_train_class2), axis=0)
X_test = np.concatenate((X_test_class0, X_test_class1, X_test_class2), axis=0)
y_train = np.concatenate((np.zeros(40), np.ones(40), np.ones(40)*2)).astype(int)
y_test = np.concatenate((np.zeros(10), np.ones(10), np.ones(10)*2)).astype(int)
# 计算每个类的概率密度函数,即每个类的样本均值与方差(假设样本特征数据满足高斯分布)
class0_mean = np.mean(X_train[y_train == 0], axis=0)
class0_var = np.var(X_train[y_train == 0], axis=0)
class1_mean = np.mean(X_train[y_train == 1], axis=0)
class1_var = np.var(X_train[y_train == 1], axis=0)
class2_mean = np.mean(X_train[y_train == 2], axis=0)
class2_var = np.var(X_train[y_train == 2], axis=0)
# 将测试样本带入每个类的概率密度函数,并判断该样本属于哪个类别
y_pred = []
for x in X_test:
# 计算每个类的概率密度函数值
class0_prob = norm.pdf(x, loc=class0_mean, scale=np.sqrt(class0_var))
class1_prob = norm.pdf(x, loc=class1_mean, scale=np.sqrt(class1_var))
class2_prob = norm.pdf(x, loc=class2_mean, scale=np.sqrt(class2_var))
# 选择概率最大的类别作为预测结果
if class0_prob > class1_prob and class0_prob > class2_prob:
y_pred.append(0)
elif class1_prob > class0_prob and class1_prob > class2_prob:
y_pred.append(1)
else:
y_pred.append(2)
# 计算精确率、召回率、F度量
tp_class0 = np.sum((y_test == 0) & (y_pred == 0))
tn_class0 = np.sum((y_test != 0) & (y_pred != 0))
fp_class0 = np.sum((y_test != 0) & (y_pred == 0))
fn_class0 = np.sum((y_test == 0) & (y_pred != 0))
precision_class0 = tp_class0 / (tp_class0 + fp_class0)
recall_class0 = tp_class0 / (tp_class0 + fn_class0)
f1_score_class0 = 2 * precision_class0 * recall_class0 / (precision_class0 + recall_class0)
tp_class1 = np.sum((y_test == 1) & (y_pred == 1))
tn_class1 = np.sum((y_test != 1) & (y_pred != 1))
fp_class1 = np.sum((y_test != 1) & (y_pred == 1))
fn_class1 = np.sum((y_test == 1) & (y_pred != 1))
precision_class1 = tp_class1 / (tp_class1 + fp_class1)
recall_class1 = tp_class1 / (tp_class1 + fn_class1)
f1_score_class1 = 2 * precision_class1 * recall_class1 / (precision_class1 + recall_class1)
tp_class2 = np.sum((y_test == 2) & (y_pred == 2))
tn_class2 = np.sum((y_test != 2) & (y_pred != 2))
fp_class2 = np.sum((y_test != 2) & (y_pred == 2))
fn_class2 = np.sum((y_test == 2) & (y_pred != 2))
precision_class2 = tp_class2 / (tp_class2 + fp_class2)
recall_class2 = tp_class2 / (tp_class2 + fn_class2)
f1_score_class2 = 2 * precision_class2 * recall_class2 / (precision_class2 + recall_class2)
precision = np.mean([precision_class0, precision_class1, precision_class2])
recall = np.mean([recall_class0, recall_class1, recall_class2])
f1_score = np.mean([f1_score_class0, f1_score_class1, f1_score_class2])
print("Precision: {:.2f}".format(precision))
print("Recall: {:.2f}".format(recall))
print("F1 score: {:.2f}".format(f1_score))
```
注意,这里使用了 Scikit-learn 库中的 `load_iris` 函数来导入鸢尾花数据集,使用了 `train_test_split` 函数来将数据集划分为训练集和测试集,使用了 Scipy 库中的 `norm` 函数来计算高斯分布的概率密度函数。最后,计算精确率、召回率、F度量的代码是针对每个类别分别计算的,然后求平均值作为最终的结果。
阅读全文