sklearn.metrics中precision_recall_curve
时间: 2023-10-06 14:06:54 浏览: 189
可以使用sklearn.metrics中的precision_recall_curve函数来计算precision-recall曲线。该函数的参数包括y_true(真实标签)、probas_pred(预测概率值)、pos_label(正类标签,默认为None)和sample_weight(样本权重,默认为None)\[1\]。该函数会返回precision(精确率)、recall(召回率)和thresholds(阈值)三个数组\[3\]。你可以通过导入precision_recall_curve函数并传入相应的参数来计算PR曲线\[3\]。例如,你可以使用以下代码计算PR曲线:
```python
from sklearn.metrics import precision_recall_curve
y_true = \[0, 0, 1, 1\]
y_score = \[0.1, 0.4, 0.35, 0.8\]
precision, recall, thresholds = precision_recall_curve(y_true, y_score)
print(precision)
print(recall)
print(thresholds)
```
运行以上代码会输出precision、recall和thresholds的值\[3\]。
#### 引用[.reference_title]
- *1* *2* [python画PR曲线(precision-recall曲线)](https://blog.csdn.net/weixin_38314865/article/details/104512608)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [python计算PR曲线sklearn.metrics.precision_recall_curve](https://blog.csdn.net/weixin_38314865/article/details/107793043)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文