from sklearn.metrics import plot_precision_recall_curve from sklearn.metrics import plot_roc_curve from sklearn.metrics import plot_confusion_matrix pr = plot_precision_recall_curve(neigh, X_test, Y_test) roc = plot_roc_curve(neigh, X_test, Y_test) disp = plot_confusion_matrix(neigh, X_test, Y_test) 帮我优化一下
时间: 2023-05-28 15:08:14 浏览: 162
以下是优化后的代码:
```
from sklearn.metrics import plot_precision_recall_curve, plot_roc_curve, plot_confusion_matrix
pr_curve = plot_precision_recall_curve(neigh, X_test, Y_test)
roc_curve = plot_roc_curve(neigh, X_test, Y_test)
confusion_matrix = plot_confusion_matrix(neigh, X_test, Y_test)
```
主要的优化是:
1. 将导入的三个库函数放在一起,提高可读性。
2. 将变量名改为更具描述性的名称,方便理解。
3. 将代码中的不必要的空格和换行删除,让代码更加简洁。
相关问题
X_train,X_test,y_train,y_test=train_test_split(X ,y,test_size=0.2,random_state=1);reg = 0.01 LogRegModel = LogisticRegression(C=1/reg, solver = 'liblinear').fit(X_train, y_train) preds = LogRegModel.predict(X_test) print('accuracy', metrics.accuracy_score(y_test, preds)) print('recall', metrics.recall_score(y_test, preds)) print('precision', metrics.precision_score(y_test, preds)) print('f1-score', metrics.f1_score(y_test, preds));from sklearn. metrics import classification_report print(classification_report(y_test, preds));from sklearn.metrics import roc_curve from sklearn.metrics import confusion_matrix import matplotlib import matplotlib.pyplot as plt %matplotlib inline y_scores = LogRegModel.predict_proba(X_test) print(y_scores) # calculate ROC curve fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1]) # plot ROC curve fig = plt.figure(figsize=(6, 6)) # Plot the diagonal 50% line plt.plot([0, 1], [0, 1], 'k--') # Plot the FPR and TPR achieved by our model plt.plot(fpr, tpr) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC Curve') plt.show()
这是一个二分类问题的逻辑回归模型的评估过程,其中使用了 train_test_split 进行数据集的划分,然后使用 LogisticRegression 进行模型的训练,并对测试集进行预测,使用了多个评价指标,如准确率、召回率、精确率、F1-score 和分类报告等;此外还使用了 ROC 曲线和 AUC 值来评估模型的性能。
from sklearn.datasets import load_iris from sklearn. model_selection import train_test_split from sklearn.metrics import classification_report from sklearn. neighbors import KNeighborsClassifier from sklearn. metrics import roc_curve, auc import matplotlib.pyplot as plt from sklearn. metrics import confusion_matrix import seaborn as sns import scikitplot as skplt #加载数据集 iris = load_iris() data = iris['data'] label = iris['target'] #数据集的划分 x_train,x_test,y_train,y_test = train_test_split(data,label,test_size=0.3) print(x_train) #模型构建 model = KNeighborsClassifier(n_neighbors=5) model.fit(x_train,y_train) #模型评估 #(1)精确率,召回率,F1分数,准确率(宏平均和微平均) predict = model. predict(x_test) result = classification_report(y_test,predict) print(result) # (2) 混淆矩阵 confusion_matrix = confusion_matrix(y_test, predict) print('混淆矩阵:', confusion_matrix) sns.set(font_scale=1) sns.heatmap(confusion_matrix, annot=True, annot_kws={"size", 16}, cmap=plt.cm.Blues) plt.title('Confusion Matrix') plt.ylabel('True label' ) plt.xlabel('Predicted label') plt.savefig('Confusion matrix. pdf') plt.show() #(3)ROC曲线 Y_pred_prob = model. predict_proba(x_test) plt.figure(figsize= (7,7)) ax= plt. subplot() skplt.metrics.plot_roc_curve(y_test,Y_pred_prob,ax= ax) ax.set_xlabel('False Positive Rate', fontsize = 20) ax.set_ylabel('True Positive Rate ',fontsize = 20) ax.set_title('ROC Areas ',fontsize = 20) plt.xlim((0, 1)) plt.ylim((0, 1)) plt.xticks(fontsize = 18) plt.yticks(fontsize = 18) plt.legend(fontsize =18) plt.savefig(' ROC.pdf') plt.show( ) #(4)P_R曲线 from sklearn.metrics import precision_recall_curve precision, recall, _ =precision_recall_curve(y_test) plt.fill_between(recall, precision,color='b') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.0]) plt.xlim([0.0, 1.0]) plt.plot(recall, precision) plt.title("Precision-Recall") plt.show()
这是一段 Python 代码,主要包括从Scikit-learn库中导入了一些数据集、分类器、评估指标和可视化工具的模块。其中load_iris用于加载鸢尾花数据集,train_test_split用于将数据集分为训练集和测试集,classification_report用于评估分类器的性能,KNeighborsClassifier是K近邻分类器,roc_curve和auc用于评估二元分类器的性能,matplotlib.pyplot和seaborn是可视化工具,confusion_matrix和scikitplot是评估和可视化混淆矩阵的工具。
阅读全文