from sklearn.metrics import precision_score, recall_score, precision_recall_curve,f1_score, fbeta_score是什么意思
时间: 2024-04-06 14:34:10 浏览: 112
这段代码是导入了Scikit-learn库中的metrics模块,并从中导入了多个评估模型性能的函数。
- precision_score函数用于计算精确率,即模型预测为正例的样本中有多少是真正的正例。
- recall_score函数用于计算召回率,即真正的正例被模型预测为正例的比例。
- precision_recall_curve函数用于计算不同阈值下的精确率和召回率,并返回阈值、精确率和召回率的数组。
- f1_score函数用于计算F1分数,是精确率和召回率的调和平均数,用于综合评价模型的性能。
- fbeta_score函数用于计算Fbeta分数,是精确率和召回率的加权调和平均数,其中beta系数可以调节模型对精确率或召回率的重视程度。
这些函数通常被用于机器学习中对模型性能进行评估和比较。
相关问题
# 导入模块 import prettytable as pt from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score, f1_score from sklearn.metrics import roc_curve, auc # 创建表格对象 table = pt.PrettyTable() # 设置表格的列名 table.field_names = ["acc", "precision", "recall", "f1", "roc_auc"] # 循环添加数据 # 20个随机状态 for i in range(1): # # GBDT GBDT = GradientBoostingClassifier(learning_rate=0.1, min_samples_leaf=14, min_samples_split=6, max_depth=10, random_state=i, n_estimators=267 ) # GBDT = GradientBoostingClassifier(learning_rate=0.1, n_estimators=142,min_samples_leaf=80,min_samples_split=296,max_depth=7 , max_features='sqrt', random_state=66 # ) GBDT.fit(train_x, train_y) y_pred = GBDT.predict(test_x) # y_predprob = GBDT.predict_proba(test_x) print(y_pred) print('AUC Score:%.4g' % metrics.roc_auc_score(test_y.values, y_pred)) # print('AUC Score (test): %f' %metrics.roc_auc_score(test_y.values,y_predprob[:,1])) accuracy = GBDT.score(val_x, val_y) accuracy1 = GBDT.score(test_x, test_y) print("GBDT最终精确度:{},{}".format(accuracy, accuracy1)) y_predict3 = GBDT.predict(test_x) get_score(test_y, y_predict3, model_name='GBDT') acc = accuracy_score(test_y, y_predict3) # 准确率 prec = precision_score(test_y, y_predict3) # 精确率 recall = recall_score(test_y, y_predict3) # 召回率 f1 = f1_score(test_y, y_predict3) # F1 fpr, tpr, thersholds = roc_curve(test_y, y_predict3) roc_auc = auc(fpr, tpr) data1 = acc data2 = prec data3 = recall data4 = f1 data5 = roc_auc # 将数据添加到表格中 table.add_row([data1, data2, data3, data4, data5]) print(table) import pandas as pd # 将数据转换为DataFrame格式 df = pd.DataFrame(list(table), columns=["acc","prec","recall","f1","roc_auc"]) # 将DataFrame写入Excel文件 writer = pd.ExcelWriter('output.xlsx') df.to_excel(writer, index=False) writer.save(),出现上面的错误怎样更正
根据错误提示可以看出是因为缺少了sklearn库中的metrics模块,需要在开头添加如下代码:
```python
from sklearn import metrics
```
另外,在代码中出现了get_score函数的调用,但是并没有定义该函数,需要先定义该函数再进行调用。
X_train,X_test,y_train,y_test=train_test_split(X ,y,test_size=0.2,random_state=1);reg = 0.01 LogRegModel = LogisticRegression(C=1/reg, solver = 'liblinear').fit(X_train, y_train) preds = LogRegModel.predict(X_test) print('accuracy', metrics.accuracy_score(y_test, preds)) print('recall', metrics.recall_score(y_test, preds)) print('precision', metrics.precision_score(y_test, preds)) print('f1-score', metrics.f1_score(y_test, preds));from sklearn. metrics import classification_report print(classification_report(y_test, preds));from sklearn.metrics import roc_curve from sklearn.metrics import confusion_matrix import matplotlib import matplotlib.pyplot as plt %matplotlib inline y_scores = LogRegModel.predict_proba(X_test) print(y_scores) # calculate ROC curve fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1]) # plot ROC curve fig = plt.figure(figsize=(6, 6)) # Plot the diagonal 50% line plt.plot([0, 1], [0, 1], 'k--') # Plot the FPR and TPR achieved by our model plt.plot(fpr, tpr) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC Curve') plt.show()
这是一个二分类问题的逻辑回归模型的评估过程,其中使用了 train_test_split 进行数据集的划分,然后使用 LogisticRegression 进行模型的训练,并对测试集进行预测,使用了多个评价指标,如准确率、召回率、精确率、F1-score 和分类报告等;此外还使用了 ROC 曲线和 AUC 值来评估模型的性能。
阅读全文