import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit #position plt.close('all') data=np.loadtxt('DATAA (1).txt',delimiter=',') t=data[:,0] x=data[:,1] t = t[130:790] x = x[130:790] plt.figure() plt.plot(t,x) plt.xlabel('time') plt.ylabel('position') max_val=max(x) max_i=list(x).index(max_val) #position up plt.figure() t_up=t[:max_i] x_up=x[:max_i] plt.plot(t_up,x_up,'r*') def fit1(t,v0,a1,x0): return x0+v0*t+0.5*a1*t**2 popt,pcov = curve_fit(fit1, t_up, x_up) plt.plot(t_up, fit1(t_up,*popt),'k', linewidth=2) #position down plt.figure() t_down=t[max_i:] x_down=x[max_i:] plt.plot(t_down,x_down,'r*') popt,pcov = curve_fit(fit1, t_down, x_down) plt.plot(t_down, fit1(t_down,*popt),'k', linewidth=2) #velocity n1=20 data=[] delta=t[1]-t[0] for i in range (n1,len(t)-n1): deri=(x[i+n1]-x[i-n1])/(2*n1*delta) data.append(deri) v=np.array(data) t= t[n1:-n1] plt.figure() plt.plot(t,v,'r*') #velocity up plt.figure() t_up=t[:max_i-n1] v_up=v[:max_i-n1] plt.plot(t_up,v_up,'r*') def fit2(t,v0,a): return v0+a*t popt,pcov = curve_fit(fit2, t_up, v_up) plt.plot(t_up, fit2(t_up,*popt),'k', linewidth=2) #velocity down plt.figure() t_down=t[max_i-n1:] v_down=v[max_i-n1:] plt.plot(t_down,v_down,'r*') popt,pcov = curve_fit(fit2, t_down, v_down) plt.plot(t_down, fit2(t_down,*popt),'k', linewidth=2) #acceleration n2=2 data2=[] for i in range (n2,len(v)-n2): deri=(v[i+n2]-v[i-n2])/(2*n2*delta) data2.append(deri) a=np.array(data2) t= t[n2:-n2] plt.figure() plt.plot(t,a,'r*') import statistics a_up_mean=statistics.mean(a[:max_i-n1-n2]) a_down_mean=statistics.mean(a[max_i-n1-n2:])出现这个错误ValueError: could not convert string to float: '0.008\t-1.2126E-4'

时间: 2023-07-14 14:14:20 浏览: 66
这个错误通常是由于数据文件中某些值无法被正确转换为浮点数导致的。在你的代码中,你使用了 `loadtxt` 函数来加载数据文件,这个函数默认会尝试将每个值解析为浮点数。你可以通过打印数据文件的每一行来查找导致错误的行。你可以尝试使用 `np.genfromtxt` 函数来读取数据文件,这个函数可以更好地处理数据文件中的错误。例如,你可以使用以下代码替换 `loadtxt` 函数: ``` data = np.genfromtxt('DATAA (1).txt', delimiter='\t', skip_header=1) ``` 这里我们使用了 `\t` 作为分隔符,并通过 `skip_header` 参数跳过了第一行。如果你的数据文件中还包含其他非浮点数的值(例如文本标签等),则你可能需要进一步处理这些值或跳过它们。
相关问题

import numpy as np import scipy as sp from scipy.optimize import leastsq import matplotlib.pyplot as plt %matplotlib inline

这段代码是在Python中利用NumPy、SciPy和Matplotlib等库进行数据分析和可视化的基本导入语句。其中,NumPy是Python中用于科学计算的基础库,提供了多维数组对象和各种数学函数;SciPy是基于NumPy的一种高级模块,提供了许多数学、科学和工程计算中常用的函数和工具;Matplotlib是Python中著名的绘图库,可用于创建各种类型的图形。leastsq函数是SciPy库中的一个非线性最小二乘函数,用于拟合数据。"%matplotlib inline"是Jupyter Notebook中的魔法命令,用于在Notebook中直接显示Matplotlib绘制的图形。

请解释import numpy as np from sklearn.model_selection import train_test_split import random from scipy.optimize import fsolve import matplotlib.pyplot as plt import heapq from tkinter import _flatten

这些是Python中导入相应的库或模块的语句。 - `import numpy as np`: 导入名为`numpy`的库,可以使用`np`作为它的别名,方便后续调用库中的函数、变量等。 - `from sklearn.model_selection import train_test_split`: 从`sklearn`库的`model_selection`模块中导入`train_test_split`函数,用于将数据集划分为训练集和测试集。 - `import random`: 导入Python自带的`random`库,用于生成随机数等操作。 - `from scipy.optimize import fsolve`: 从`scipy`库的`optimize`模块中导入`fsolve`函数,可以用于解决方程组问题。 - `import matplotlib.pyplot as plt`: 导入`matplotlib`库中用于绘图的子库`pyplot`,可以使用`plt`作为它的别名,方便后续进行绘图相关操作。 - `from tkinter import _flatten`: 从Python自带的`tkinter`库中导入名为`_flatten`的模块,可以用于将多维嵌套的列表或元组展开为一维列表。

相关推荐

import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit #position plt.close('all') data=np.loadtxt('DATAA (1).txt',delimiter=',') t=data[:,0] x=data[:,1] t = t[130:790] x = x[130:790] plt.figure() plt.plot(t,x) plt.xlabel('time') plt.ylabel('position') max_val=max(x) max_i=list(x).index(max_val) #position up plt.figure() t_up=t[:max_i] x_up=x[:max_i] plt.plot(t_up,x_up,'r*') def fit1(t,v0,a1,x0): return x0+v0t+0.5a1t**2 popt,pcov = curve_fit(fit1, t_up, x_up) plt.plot(t_up, fit1(t_up,popt),'k', linewidth=2) #position down plt.figure() t_down=t[max_i:] x_down=x[max_i:] plt.plot(t_down,x_down,'r') popt,pcov = curve_fit(fit1, t_down, x_down) plt.plot(t_down, fit1(t_down,popt),'k', linewidth=2) #velocity n1=20 data=[] delta=t[1]-t[0] for i in range (n1,len(t)-n1): deri=(x[i+n1]-x[i-n1])/(2n1delta) data.append(deri) v=np.array(data) t= t[n1:-n1] plt.figure() plt.plot(t,v,'r*') #velocity up plt.figure() t_up=t[:max_i-n1] v_up=v[:max_i-n1] plt.plot(t_up,v_up,'r*') def fit2(t,v0,a): return v0+at popt,pcov = curve_fit(fit2, t_up, v_up) plt.plot(t_up, fit2(t_up,popt),'k', linewidth=2) #velocity down plt.figure() t_down=t[max_i-n1:] v_down=v[max_i-n1:] plt.plot(t_down,v_down,'r') popt,pcov = curve_fit(fit2, t_down, v_down) plt.plot(t_down, fit2(t_down,popt),'k', linewidth=2) #acceleration n2=2 data2=[] for i in range (n2,len(v)-n2): deri=(v[i+n2]-v[i-n2])/(2n2delta) data2.append(deri) a=np.array(data2) t= t[n2:-n2] plt.figure() plt.plot(t,a,'r*') import statistics a_up_mean=statistics.mean(a[:max_i-n1-n2]) a_down_mean=statistics.mean(a[max_i-n1-n2:])出现这个错误ValueError: could not convert string to float: '0.008\t-1.2126E-4'如何改进。

请删除下面代码中的strike_range使其能够通过输入一组行权价格来绘制波动率微笑曲线import numpy as np from scipy.stats import norm from scipy.optimize import minimize import matplotlib.pyplot as plt def bs_option_price(S, K, r, q, sigma, T, option_type): d1 = (np.log(S/K) + (r - q + sigma**2/2) * T) / (sigma * np.sqrt(T)) d2 = d1 - sigma * np.sqrt(T) if option_type == 'call': Nd1 = norm.cdf(d1) Nd2 = norm.cdf(d2) option_price = S * np.exp(-q * T) * Nd1 - K * np.exp(-r * T) * Nd2 elif option_type == 'put': Nd1 = norm.cdf(-d1) Nd2 = norm.cdf(-d2) option_price = K * np.exp(-r * T) * (1 - Nd2) - S * np.exp(-q * T) * (1 - Nd1) else: raise ValueError('Invalid option type') return option_price def implied_volatility(S, K, r, q, T, option_price, option_type): obj_fun = lambda sigma: (bs_option_price(S, K, r, q, sigma, T, option_type) - option_price)**2 res = minimize(obj_fun, x0=0.2) return res.x[0] def smile_curve(S, r, q, T, option_type, strike_range, option_prices): vols = [] for K, option_price in zip(strike_range, option_prices): vol = implied_volatility(S, K, r, q, T, option_price, option_type) vols.append(vol) plt.plot(strike_range, vols) plt.xlabel('Strike') plt.ylabel('Implied Volatility') plt.title(f'{option_type.capitalize()} Implied Volatility Smile') plt.show() S = 100 r = 0.05 q = 0.02 T = 0.25 option_type = 'call' strike_range = np.linspace(80, 120, 41) option_prices = [13.05, 10.40, 7.93, 5.75, 4.00, 2.66, 1.68, 1.02, 0.58, 0.31, 0.15, 0.07, 0.03, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.01, 0.03, 0.07, 0.14, 0.25, 0.42, 0.67, 1.00, 1.44, 2.02, 2.74, 3.60, 4.60, 5.73, 7.00, 8.39, 9.92, 11.57, 13.34, 15.24] smile_curve(S, r, q, T, option_type, strike_range, option_prices)

请优化下面的代码使其能够通过输入一组行权价来绘制波动率微笑曲线 import numpy as np from scipy.stats import norm from scipy.optimize import minimize import matplotlib.pyplot as plt def bs_option_price(S, K, r, q, sigma, T, option_type): d1 = (np.log(S/K) + (r - q + sigma**2/2) * T) / (sigma * np.sqrt(T)) d2 = d1 - sigma * np.sqrt(T) if option_type == 'call': Nd1 = norm.cdf(d1) Nd2 = norm.cdf(d2) option_price = S * np.exp(-q * T) * Nd1 - K * np.exp(-r * T) * Nd2 elif option_type == 'put': Nd1 = norm.cdf(-d1) Nd2 = norm.cdf(-d2) option_price = K * np.exp(-r * T) * (1 - Nd2) - S * np.exp(-q * T) * (1 - Nd1) else: raise ValueError('Invalid option type') return option_price def implied_volatility(S, K, r, q, T, option_price, option_type): obj_fun = lambda sigma: (bs_option_price(S, K, r, q, sigma, T, option_type) - option_price)**2 res = minimize(obj_fun, x0=0.2) return res.x[0] def smile_curve(S, r, q, T, option_type, strike_range, option_prices): vols = [] for K, option_price in zip(strike_range, option_prices): vol = implied_volatility(S, K, r, q, T, option_price, option_type) vols.append(vol) plt.plot(strike_range, vols) plt.xlabel('Strike') plt.ylabel('Implied Volatility') plt.title(f'{option_type.capitalize()} Implied Volatility Smile') plt.show() S = 100 r = 0.05 q = 0.02 T = 0.25 option_type = 'call' strike_range = np.linspace(80, 120, 41) option_prices = [13.05, 10.40, 7.93, 5.75, 4.00, 2.66, 1.68, 1.02, 0.58, 0.31, 0.15, 0.07, 0.03, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.01, 0.03, 0.07, 0.14, 0.25, 0.42, 0.67, 1.00, 1.44, 2.02, 2.74, 3.60, 4.60, 5.73, 7.00, 8.39, 9.92, 11.57, 13.34, 15.24] smile_curve(S, r, q, T, option_type, strike_range, option_prices)

请将下面代码中的两张波动率微笑的图绘制到一张图中# -- coding: utf-8 -- """ Created on Sun May 28 18:08:36 2023 @author: lll """ import numpy as np import matplotlib.pyplot as plt from scipy.optimize import brentq from scipy.stats import norm # 定义BS模型计算期权价格的函数 def bs_price(S, K, r, T, sigma, option='call'): d1 = (np.log(S/K) + (r + 0.5sigma**2)T) / (sigmanp.sqrt(T)) d2 = d1 - sigmanp.sqrt(T) if option == 'call': price = Snorm.cdf(d1) - Knp.exp(-rT)norm.cdf(d2) else: price = Knp.exp(-rT)norm.cdf(-d2) - Snorm.cdf(-d1) return price # 定义计算隐含波动率的函数 def implied_vol(S, K, r, T, price, option='call'): def f(sigma): return bs_price(S, K, r, T, sigma, option) - price return brentq(f, 0.001, 10) # 定义计算波动率微笑图形的函数 def smile_vol(S, r, T, vol_list, K_list, option='call'): if len(vol_list) != len(K_list): raise ValueError("Lengths of vol_list and K_list must be equal.") implied_vol_list = [] for K, vol in zip(K_list, vol_list): price = bs_price(S, K, r, T, vol, option) implied_vol_list.append(implied_vol(S, K, r, T, price, option)) plt.plot(K_list, implied_vol_list) plt.xlabel('Strike') plt.ylabel('Implied Volatility') plt.title('Volatility Smile') plt.show() # 示例代码 S = 100 r = 0.05 T = 1 K_list = np.arange(80, 121, 9) vol_call_list = [0.2, 0.3, 0.4, 0.5, 0.6] vol_put_list = [0.6, 0.5, 0.4, 0.3, 0.2] smile_vol(S, r, T, vol_call_list, K_list, option='call') smile_vol(S, r, T, vol_put_list, K_list, option='put')

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩