如何在yolov5-seg中添加注意力 给出代码示例
时间: 2024-02-23 14:01:52 浏览: 80
在yolov5-seg中添加注意力可以使用SENet(Squeeze-and-Excitation Network)模块或CBAM(Convolutional Block Attention Module)模块来实现。以下是使用SENet模块在yolov5-seg中添加注意力的代码示例:
```python
import torch.nn as nn
class SEBlock(nn.Module):
def __init__(self, in_channels, reduction=16):
super(SEBlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(in_channels // reduction, in_channels, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
class YOLOv5_seg(nn.Module):
def __init__(self):
super(YOLOv5_seg, self).__init__()
# define your network here
# add SEBlock to some layers
self.se1 = SEBlock(in_channels=64)
self.se2 = SEBlock(in_channels=128)
self.se3 = SEBlock(in_channels=256)
def forward(self, x):
# forward pass of your network here
# add SEBlock to some layers
x = self.se1(x)
x = self.se2(x)
x = self.se3(x)
return x
```
在这个代码示例中,我们定义了一个名为`SEBlock`的SENet模块,它接受输入张量并通过全局平均池化和两个全连接层来计算通道注意力权重,最后使用Sigmoid函数将权重映射到[0, 1]范围内。然后,我们将`SEBlock`添加到了网络的某些层中,以实现注意力机制的引入。在`forward`方法中,我们首先对输入进行正向传递,然后在某些层上应用`SEBlock`。
阅读全文