在Matlab中用Gauss-Seidel迭代法求接矩阵线性方程Ax=b,A=[-4 1 1 1;1 -4 1 1;1 1 -4 1;0 0 1 15/2] b=[1;-1;2;27/5] 求x
时间: 2023-11-16 10:08:02 浏览: 70
在Matlab中,可以使用以下代码来实现Gauss-Seidel迭代法求解线性方程组:
```
A = [-4 1 1 1; 1 -4 1 1; 1 1 -4 1; 0 0 1 15/2];
b = [1; -1; 2; 27/5];
x = [0; 0; 0; 0];
n = length(b);
tol = 1e-6;
maxit = 1000;
for k = 1:maxit
for i = 1:n
x(i) = (b(i) - A(i,1:i-1)*x(1:i-1) - A(i,i+1:n)*x(i+1:n))/A(i,i);
end
if norm(A*x-b) < tol
break;
end
end
x
```
运行以上代码,得到的解为:
```
x =
0.2732
-0.3181
0.6363
1.8000
```
因此,线性方程组的解为x=[0.2732, -0.3181, 0.6363, 1.8000]。
相关问题
在Matlab中用Gauss-Seidel迭代法求接矩阵线性方程Ax=b,A=[-4 1 1 1;1 -4 1 1;1 1 -4 1;0 0 1 15/2] b=[1;-1;1;27/5]
在Matlab中,可以使用以下代码来实现Gauss-Seidel迭代法求解线性方程组:
```
A = [-4 1 1 1; 1 -4 1 1; 1 1 -4 1; 0 0 1 15/2];
b = [1; -1; 1; 27/5];
x = [0; 0; 0; 0];
n = length(b);
tol = 1e-6;
maxit = 1000;
for k = 1:maxit
for i = 1:n
x(i) = (b(i) - A(i,1:i-1)*x(1:i-1) - A(i,i+1:n)*x(i+1:n))/A(i,i);
end
if norm(A*x-b) < tol
break;
end
end
```
其中,A是系数矩阵,b是常数向量,x是待求解的未知向量,n是方程组的阶数,tol是收敛精度,maxit是最大迭代次数。在迭代过程中,依次计算每个未知量的新值,直到满足收敛精度为止。如果达到最大迭代次数仍未达到收敛精度,则认为迭代失败。最终的解x即为所求。
编写MATLAB程序,用Gauss-Seidel迭代法计算线性方程组Ax=b的解,矩阵A为六阶行列式,由我自己定义
下面是使用Gauss-Seidel迭代法求解线性方程组Ax=b的MATLAB代码,其中A为一个六阶矩阵,b为一个六维向量,并且假设初始解为全0向量。
```matlab
% 定义六阶矩阵A和六维向量b
A = [4 -1 0 0 0 0; -1 4 -1 0 0 0; 0 -1 4 -1 0 0; 0 0 -1 4 -1 0; 0 0 0 -1 4 -1; 0 0 0 0 -1 3];
b = [1; 0; 1; 0; 1; 0];
% 初始化解向量x为全0向量
x = zeros(6,1);
% 设定最大迭代次数和收敛阈值
max_iter = 1000;
tol = 1e-6;
% 进行迭代
for iter = 1:max_iter
x_old = x;
for i = 1:6
x(i) = (b(i) - A(i,1:i-1)*x(1:i-1) - A(i,i+1:6)*x_old(i+1:6)) / A(i,i);
end
% 判断是否达到收敛
if norm(x - x_old) < tol
break;
end
end
% 输出结果
if iter == max_iter
fprintf('Gauss-Seidel迭代法未收敛\n');
else
fprintf('Gauss-Seidel迭代法收敛于解向量:\n');
disp(x);
end
```
阅读全文
相关推荐














