iris=load_iris() print(iris) array=iris.values x=array[:,:3] y=array[:,3] print(data.shape)为什么会报错
时间: 2024-02-18 08:05:31 浏览: 58
代码中使用了未定义的变量`data`,应该将`data`改为`x`,即:
```
iris = load_iris()
print(iris)
array = iris.values
x = array[:, :3]
y = array[:, 3]
print(x.shape)
```
这样就可以正确运行了。
相关问题
iris = load_iris() print(iris) array = iris.values x = array[:, :3] y = array[:, 3] print(x.shape)为什么报错TypeError: 'builtin_function_or_method' object is not subscriptable
这个错误通常是因为没有导入`pandas`库而使用了`iris.values`。`load_iris()`函数返回的是一个`sklearn.utils.Bunch`类型的对象,不是`pandas.DataFrame`类型的对象,因此没有`.values`属性。如果你想使用`pandas`库,可以将`iris`转换为`DataFrame`类型,然后再进行操作,代码如下:
```
from sklearn.datasets import load_iris
import pandas as pd
iris = load_iris()
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
x = df.iloc[:, :3].values
y = df.iloc[:, 3].values
print(x.shape)
```
如果不想使用`pandas`库,那么可以直接使用`iris.data`来获取数据,代码如下:
```
from sklearn.datasets import load_iris
iris = load_iris()
x = iris.data[:, :3]
y = iris.data[:, 3]
print(x.shape)
```
这两段代码都可以正常运行,输出结果为`(150, 3)`。
import random import numpy as np import matplotlib.pyplot as plt 生成随机坐标点 def generate_points(num_points): points = [] for i in range(num_points): x = random.uniform(-10, 10) y = random.uniform(-10, 10) points.append([x, y]) return points 计算欧几里得距离 def euclidean_distance(point1, point2): return np.sqrt(np.sum(np.square(np.array(point1) - np.array(point2)))) K-means算法实现 def kmeans(points, k, num_iterations=100): num_points = len(points) # 随机选择k个点作为初始聚类中心 centroids = random.sample(points, k) # 初始化聚类标签和距离 labels = np.zeros(num_points) distances = np.zeros((num_points, k)) for i in range(num_iterations): # 计算每个点到每个聚类中心的距离 for j in range(num_points): for l in range(k): distances[j][l] = euclidean_distance(points[j], centroids[l]) # 根据距离将点分配到最近的聚类中心 for j in range(num_points): labels[j] = np.argmin(distances[j]) # 更新聚类中心 for l in range(k): centroids[l] = np.mean([points[j] for j in range(num_points) if labels[j] == l], axis=0) return labels, centroids 生成坐标点 points = generate_points(100) 对点进行K-means聚类 k_values = [2, 3, 4] for k in k_values: labels, centroids = kmeans(points, k) # 绘制聚类结果 colors = [‘r’, ‘g’, ‘b’, ‘y’, ‘c’, ‘m’] for i in range(k): plt.scatter([points[j][0] for j in range(len(points)) if labels[j] == i], [points[j][1] for j in range(len(points)) if labels[j] == i], color=colors[i]) plt.scatter([centroid[0] for centroid in centroids], [centroid[1] for centroid in centroids], marker=‘x’, color=‘k’, s=100) plt.title(‘K-means clustering with k={}’.format(k)) plt.show()import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris 载入数据集 iris = load_iris() X = iris.data y = iris.target K-means聚类 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) 可视化结果 plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.xlabel(‘Sepal length’) plt.ylabel(‘Sepal width’) plt.title(‘K-means clustering on iris dataset’) plt.show()对这个算法的结果用SSE,轮廓系数,方差比率准则,DBI几个指标分析
首先,我们需要定义这些指标:
1. SSE (Sum of Squared Errors):误差平方和,表示每个点到其所属簇中心的距离的平方和,用于评估聚类效果的好坏。
2. 轮廓系数 (Silhouette Coefficient):表示一个样本与其所属簇内其他样本的相似度,与其与最近簇的其他样本的相似度之间的比值,取值范围为[-1, 1],越接近1表示聚类效果越好。
3. 方差比率准则 (Variance Ratio Criterion):表示不同簇之间的距离与同一簇内部的距离的比值,用于评估聚类效果的好坏。
4. DBI (Davies-Bouldin Index):表示不同簇之间的距离与同一簇内部的距离之和的比值,用于评估聚类效果的好坏。
接下来,我们分别用这些指标来评估上面两段代码实现的K-means算法的聚类效果。
对于第一段代码,我们可以在K-means算法的函数中添加计算SSE的代码,并在函数返回值中返回SSE的值。同时,我们可以使用sklearn库中的metrics模块来计算轮廓系数。方差比率准则的计算与SSE类似,只需要将距离平方和改为距离的平方和,即可得到方差比率准则的值。DBI的计算可以使用sklearn库中的metrics模块中的davies_bouldin_score函数来实现。
代码如下所示:
```
import random import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import silhouette_score from sklearn.metrics import davies_bouldin_score # 生成随机坐标点 def generate_points(num_points): points = [] for i in range(num_points): x = random.uniform(-10, 10) y = random.uniform(-10, 10) points.append([x, y]) return points # 计算欧几里得距离 def euclidean_distance(point1, point2): return np.sqrt(np.sum(np.square(np.array(point1) - np.array(point2)))) # K-means算法实现 def kmeans(points, k, num_iterations=100): num_points = len(points) # 随机选择k个点作为初始聚类中心 centroids = random.sample(points, k) # 初始化聚类标签和距离 labels = np.zeros(num_points) distances = np.zeros((num_points, k)) sse = 0 for i in range(num_iterations): # 计算每个点到每个聚类中心的距离 for j in range(num_points): for l in range(k): distances[j][l] = euclidean_distance(points[j], centroids[l]) # 根据距离将点分配到最近的聚类中心 for j in range(num_points): labels[j] = np.argmin(distances[j]) # 更新聚类中心 for l in range(k): centroids[l] = np.mean([points[j] for j in range(num_points) if labels[j] == l], axis=0) # 计算SSE sse = np.sum(np.square(distances[np.arange(num_points), labels])) # 计算轮廓系数 silhouette = silhouette_score(points, labels) # 计算方差比率准则 var_ratio = np.sum(np.min(distances, axis=1)) / sse # 计算DBI dbi = davies_bouldin_score(points, labels) return labels, centroids, sse, silhouette, var_ratio, dbi # 生成坐标点 points = generate_points(100) # 对点进行K-means聚类 k_values = [2, 3, 4] for k in k_values: labels, centroids, sse, silhouette, var_ratio, dbi = kmeans(points, k) # 绘制聚类结果 colors = ['r', 'g', 'b', 'y', 'c', 'm'] for i in range(k): plt.scatter([points[j][0] for j in range(len(points)) if labels[j] == i], [points[j][1] for j in range(len(points)) if labels[j] == i], color=colors[i]) plt.scatter([centroid[0] for centroid in centroids], [centroid[1] for centroid in centroids], marker='x', color='k', s=100) plt.title('K-means clustering with k={}'.format(k)) plt.show() print('SSE: {:.2f}'.format(sse)) print('Silhouette: {:.2f}'.format(silhouette)) print('Variance Ratio Criterion: {:.2f}'.format(var_ratio)) print('DBI: {:.2f}'.format(dbi))
```
对于第二段代码,我们可以使用sklearn库中的metrics模块来计算SSE、轮廓系数和DBI,方差比率准则的计算方法与第一段代码相同。
代码如下所示:
```
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris from sklearn.metrics import silhouette_score from sklearn.metrics import davies_bouldin_score # 载入数据集 iris = load_iris() X = iris.data y = iris.target # K-means聚类 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) # 计算SSE sse = np.sum(np.square(X - kmeans.cluster_centers_[kmeans.labels_])) # 计算轮廓系数 silhouette = silhouette_score(X, kmeans.labels_) # 计算方差比率准则 var_ratio = kmeans.inertia_ / sse # 计算DBI dbi = davies_bouldin_score(X, kmeans.labels_) # 可视化结果 plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.title('K-means clustering on iris dataset') plt.show() print('SSE: {:.2f}'.format(sse)) print('Silhouette: {:.2f}'.format(silhouette)) print('Variance Ratio Criterion: {:.2f}'.format(var_ratio)) print('DBI: {:.2f}'.format(dbi))
```
通过这些指标的计算,我们可以得到K-means算法的聚类效果的好坏。一般来说,SSE和轮廓系数越小,方差比率准则越大,DBI越小,则聚类效果越好。
阅读全文