df_1.drop(df_1.index[1],inplace=True)
时间: 2024-05-21 12:10:20 浏览: 69
This code will drop the row at index 1 in the DataFrame df_1. The "inplace=True" parameter means that the DataFrame will be modified in place, rather than creating a new DataFrame with the row removed.
相关问题
120秒中断次数', '外呼120秒以上次数', '外呼总次数', '外呼成功率', '外呼60秒中断率', '外呼拒接率', '外呼平均时长', '外呼总时长', 'label'] #df_9.drop(columns=['质心距离']) print("df_0:",len(df_0)) print("df_1:",len(df_1)) print("df_9:",len(df_9)) df_0.reset_index(drop=True, inplace=True) df_1.reset_index(drop=True, inplace=True) df_9.reset_index(drop=True, inplace=True) return df_0, df_1, df_9
这段代码打印了数据框 df_0、df_1 和 df_9 的长度即每个数据框中的样本数量。
接下,代码使用 reset_index 函数重置了 df_0、df_1 和 df_9 的索引,并将其修改为连续的整数索引。
最后,代码返回了修改后的 df_0、df_1 和 df_9 数据框。
这段代码的作用是打印数据框的长度,并对数据框的索引进行重置,以保证索引的连续性。返回的数据框可以在后续的数据处理和分析中使用。
# 如果已经进行过特征筛选,则直接保留重要特征 if os.path.exists('model/easy_feature_select.csv'): df_importances = pd.read_csv('model/easy_feature_select.csv', encoding='gbk') important_features = df_importances.features.tolist() x_train, x_test = x_train[important_features], x_test[important_features] df_ft = df_ft[['label'] + important_features] # 如果为进行特征筛选,则直接删除无用特征 elif cfg_dict['features']['features_not_use_temp']!='': drop_features = cfg_dict['features']['features_not_use_temp'].split(',') x_train.drop(drop_features, axis=1, inplace=True) x_test.drop(drop_features, axis=1, inplace=True) # x_train, x_test = x_train[important_features], x_test[important_features] df_ft = df_ft.drop(drop_features, axis=1, inplace=True)
这段代码用于特征筛选。
首先,代码检查是否存在名为 'model/easy_feature_select.csv' 的文件。如果文件存在,则读取该文件的内容到一个名为 df_importances 的数据框中,其中包含了特征的重要性信息。然后,将重要特征的列名存储在一个名为 important_features 的列表中。接着,代码根据重要特征列表,从 x_train 和 x_test 数据框中保留这些特征,同时从 df_ft 数据框中保留 'label' 列和重要特征列。
如果文件 'model/easy_feature_select.csv' 不存在,则检查配置参数 cfg_dict['features']['features_not_use_temp'] 的值是否为空。如果不为空,说明存在需要删除的无用特征。将 cfg_dict['features']['features_not_use_temp'] 字符串以逗号为分隔符拆分成一个名为 drop_features 的列表。然后,代码分别从 x_train、x_test 和 df_ft 数据框中删除 drop_features 中包含的特征列。
这段代码的作用是根据特征的重要性或者配置参数来进行特征筛选。如果已经进行过特征筛选,则保留重要特征;如果没有进行特征筛选,则直接删除无用特征。最终得到的 x_train、x_test 和 df_ft 数据框中只包含需要使用的特征列。
阅读全文