test_images = 'data/test' # 定义测试集图像路径 test_data = [] for path in test_images: image = imageio.imread(path) image = np.expand_dims(image, axis=-1) image = image / 255.0 test_data.append(image) test_data = np.array(test_data) predictions = model.predict(test_data) # 保存预测结果 for i, pred in enumerate(predictions): imageio.imwrite(f"prediction_{i}.png", pred)怎么改
时间: 2024-02-03 21:03:15 浏览: 160
测试函数_算法测试_测试函数_测试函数图像_
5星 · 资源好评率100%
如果你想改进这段代码,可以考虑以下几点:
1. 使用更快速的图像读取方式,比如使用Pillow库的Image.open()方法,可以提高读取速度。
2. 如果测试集图像数量较大,可以考虑使用tf.data.Dataset读取数据,可以提高数据读取速度和训练效率。
3. 在预测结果保存时,可以使用更加直观的文件名,比如使用测试集图像的文件名作为预测结果文件名,方便后续查看和分析。
下面是代码示例:
```python
import os
import tensorflow as tf
from PIL import Image
test_images = 'data/test' # 定义测试集图像路径
test_data = []
for filename in os.listdir(test_images):
path = os.path.join(test_images, filename)
with Image.open(path) as img:
img = img.convert('L') # 转换为灰度图像
img = np.array(img) / 255.0 # 归一化
test_data.append(img)
test_data = np.array(test_data)
predictions = model.predict(test_data) # 预测结果
for i, pred in enumerate(predictions):
filename = os.listdir(test_images)[i]
new_filename = os.path.splitext(filename)[0] + '_prediction.png' # 构造新文件名
imageio.imwrite(new_filename, pred)
```
这样改进后的代码,可以更加高效地读取测试集图像数据,并保存预测结果。
阅读全文