01背包问题蚁群算法python
时间: 2023-12-02 21:43:23 浏览: 196
以下是使用蚁群算法解决01背包问题的Python代码:
```python
import random
# 蚂蚁数量
ant_count = 50
# 迭代次数
iterations = 200
# 信息素挥发系数
rho = 0.1
# 信息素强度
Q = 1
# 信息素启发因子
alpha = 1
# 距离启发因子
beta = 2
# 最大质量
max_weight = 100
# 物品数量
item_count = 20
# 物品重量
item_weights = [random.randint(1, 10) for _ in range(item_count)]
# 物品价值
item_values = [random.randint(1, 10) for _ in range(item_count)]
# 信息素矩阵
pheromone = [[1.0 for _ in range(max_weight + 1)] for _ in range(item_count)]
# 最优解
best_solution = []
best_value = 0
# 计算每个物品的价值密度
def calculate_density():
density = []
for i in range(item_count):
density.append(item_values[i] / item_weights[i])
return density
# 计算每个物品被选中的概率
def calculate_probabilities(ant, selected_items, density):
probabilities = []
total_prob = 0
for i in range(item_count):
if i not in selected_items:
if ant['current_weight'] + item_weights[i] <= max_weight:
p = pow(pheromone[i][ant['current_weight'] + item_weights[i]], alpha) * pow(density[i], beta)
probabilities.append(p)
total_prob += p
else:
probabilities.append(0)
else:
probabilities.append(0)
if total_prob == 0:
return [1 / (item_count - len(selected_items)) if i not in selected_items else 0 for i in range(item_count)]
else:
return [p / total_prob if i not in selected_items else 0 for i, p in enumerate(probabilities)]
# 选择下一个物品
def select_next_item(ant, selected_items, density):
probabilities = calculate_probabilities(ant, selected_items, density)
r = random.uniform(0, 1)
total_prob = 0
for i, p in enumerate(probabilities):
total_prob += p
if total_prob >= r:
return i
return -1
# 更新信息素矩阵
def update_pheromone():
global pheromone
for i in range(item_count):
for j in range(max_weight + 1):
pheromone[i][j] *= (1 - rho)
for ant in ants:
if ant['value'] > 0:
pheromone[i][j] += (Q / ant['value']) * ant['items'].count(i) * int(j == ant['current_weight'])
# 初始化蚂蚁
def init_ants():
ants = []
for i in range(ant_count):
ant = {'items': [], 'value': 0, 'current_weight': 0}
ants.append(ant)
return ants
# 计算蚂蚁的价值和重量
def calculate_ant_value(ant):
value = 0
weight = 0
for i in ant['items']:
value += item_values[i]
weight += item_weights[i]
ant['value'] = value
ant['current_weight'] = weight
# 蚁群算法主函数
def ant_colony_optimization():
global best_solution, best_value
density = calculate_density()
ants = init_ants()
for it in range(iterations):
for ant in ants:
selected_items = []
while ant['current_weight'] < max_weight:
next_item = select_next_item(ant, selected_items, density)
if next_item == -1:
break
ant['items'].append(next_item)
selected_items.append(next_item)
ant['current_weight'] += item_weights[next_item]
calculate_ant_value(ant)
if ant['value'] > best_value:
best_solution = ant['items']
best_value = ant['value']
update_pheromone()
return best_solution, best_value
# 测试
best_solution, best_value = ant_colony_optimization()
print('最优解:', best_solution)
print('最优价值:', best_value)
```
阅读全文