transformer代码实现例子
时间: 2023-09-30 20:12:57 浏览: 203
Transformer代码
5星 · 资源好评率100%
以下是一个使用PyTorch实现Transformer模型的简单示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=0.1)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class Transformer(nn.Module):
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6,
dim_feedforward=2048, dropout=0.1):
super(Transformer, self).__init__()
encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout)
encoder_norm = nn.LayerNorm(d_model)
self.encoder = nn.TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout)
decoder_norm = nn.LayerNorm(d_model)
self.decoder = nn.TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)
self.fc = nn.Linear(d_model, vocab_size)
self.source_embedding = nn.Embedding(vocab_size, d_model)
self.target_embedding = nn.Embedding(vocab_size, d_model)
self.positional_encoding = PositionalEncoding(d_model)
def forward(self, source, target):
source_embedded = self.source_embedding(source)
target_embedded = self.target_embedding(target)
source_embedded = self.positional_encoding(source_embedded)
target_embedded = self.positional_encoding(target_embedded)
encoder_output = self.encoder(source_embedded)
decoder_output = self.decoder(target_embedded, encoder_output)
output = self.fc(decoder_output)
return F.log_softmax(output, dim=-1)
```
上述代码定义了一个简单的Transformer模型,其中使用了`nn.TransformerEncoder`和`nn.TransformerDecoder`来实现编码器和解码器。模型通过嵌入层将输入序列编码为嵌入向量,然后经过位置编码层进行位置编码。编码器和解码器分别通过多层的Transformer层进行处理,最后通过全连接层输出预测结果。
请注意,上述代码仅为示例,实际应用中可能需要根据具体任务进行修改和优化。
阅读全文