#pragma vector = UART1_R_RXNE_vector
时间: 2024-06-22 13:04:09 浏览: 174
#pragma vector = UART1_R_RXNE_vector 是一种编译器特定的指令,在Keil uVision或类似开发环境中,它用于设置中断向量(Interrupt Vector)表中的某个中断服务程序(ISRP,Interrupt Service Routine)对应的处理位置。UART1_R_RXNE_vector 指的是 UART1(通用异步接收发送模块)的接收数据就绪(Receive Not Empty)中断向量。
UART1是一个串行通信接口,当数据从串口接收缓冲区RX FIFO中被填充时,R_RXNE(Receive Register Not Empty)中断就会触发。通过设置#pragma vector,开发者可以告诉编译器,当这个特定的中断发生时,应执行哪个中断服务例程来处理接收到的数据或者相关的任务,比如数据解析、错误检查等。
相关问题
解释这段代码#include <msp430.h> #define CPU_F ((double)1000000) #define delay_us(x) __delay_cycles((long)(CPU_F*(double)x/100000.0)) #define delay_ms(x) __delay_cycles((long)(CPU_F*(double)x1000.0)) /** * main.c */ unsigned char count=0; int main(void) { WDTCTL = WDTPW | WDTHOLD; // stop watchdog timer P1DIR |= BIT0;//P1.0为输出 TA0CCTL0 = CCIE;//CCR0中断使能 TA0CCR0 = 50000;//设定计数值 TA0CTL =TASSEL_2+MC_1+TACLR;//SMCLK,增计数模式,清除TAR _bis_SR_register(LPM0_bits+GIE);//低功耗模式0,使能中断 } #pragma vector=TIMER0_A0_VECTOR __interrupt void TIMER0_A0_ISR(void) { count ++; if(count == 20) { count=0; P1OUT ^= BIT0;//1s改变LED1灯状态 } }
这段代码使用了 MSP430 微控制器的头文件,并定义了一些宏和变量。主要的代码逻辑是使用 Timer0 来生成一个固定时间间隔的中断,然后在中断服务函数中改变 P1.0 引脚的状态,从而控制 LED1 灯的闪烁。
具体解释如下:
1. `#include <msp430.h>`:包含 MSP430 微控制器的头文件,以便使用相关的寄存器和函数。
2. 宏定义部分:
- `#define CPU_F ((double)1000000)`:定义一个名为 `CPU_F` 的宏,表示 CPU 的频率为 1MHz。
- `#define delay_us(x) __delay_cycles((long)(CPU_F*(double)x/100000.0))`:定义一个名为 `delay_us` 的宏,用于延迟指定的微秒数。
- `#define delay_ms(x) __delay_cycles((long)(CPU_F*(double)x1000.0))`:定义一个名为 `delay_ms` 的宏,用于延迟指定的毫秒数。
3. `unsigned char count=0;`:声明一个无符号字符型变量 `count`,用于计数。
4. `int main(void)`:主函数入口。
5. `WDTCTL = WDTPW | WDTHOLD;`:停用看门狗定时器。
6. `P1DIR |= BIT0;`:将 P1.0 引脚设置为输出模式,即控制 LED1。
7. 定时器配置部分:
- `TA0CCTL0 = CCIE;`:使能 Timer0 的 CCR0 中断。
- `TA0CCR0 = 50000;`:设置 Timer0 的计数值,即触发中断的时间间隔。
- `TA0CTL = TASSEL_2+MC_1+TACLR;`:配置 Timer0 的时钟源为 SMCLK、增计数模式,并清除 TAR 寄存器的值。
8. `_bis_SR_register(LPM0_bits+GIE);`:将 CPU 进入低功耗模式 0,同时使能全局中断。
9. `#pragma vector=TIMER0_A0_VECTOR`:设置 Timer0 的 CCR0 中断向量。
10. `__interrupt void TIMER0_A0_ISR(void)`:Timer0 CCR0 中断服务函数。
11. `count++;`:每次中断发生时,将计数值加 1。
12. `if(count == 20)`:当计数值达到 20 时执行下面的操作。
13. `count=0;`:将计数值重新设为 0。
14. `P1OUT ^= BIT0;`:通过异或操作改变 P1.0 引脚的状态,实现 LED1 的闪烁效果。
以上就是这段代码的基本解释,它通过定时器中断实现了 LED1 的周期性闪烁。
请从小白的角度给这段代码加上详细的注释 #include "./fir.h" coef_t c[N]; void fir(data_t *y, data_t x) { #pragma HLS ARRAY_PARTITION variable=c complete dim=0 static data_t shift_reg[N]; #pragma HLS ARRAY_PARTITION variable=shift_reg complete dim=0 acc_t acc; int i; acc = 0; #pragma HLS PIPELINE II=1 for (i = N - 1; i >= 0; i--) { if (i == 0) { acc += x * c[0]; shift_reg[0] = x; } else { shift_reg[i] = shift_reg[i - 1]; acc += shift_reg[i] * c[i]; } } *y = acc; } void fir_wrap(data_t *y, data_t *x, int len, coef_t *coef) { #pragma HLS INTERFACE m_axi port=coef offset=slave depth=99 #pragma HLS INTERFACE m_axi port=x offset=slave depth=100 #pragma HLS INTERFACE m_axi port=y offset=slave depth=100 #pragma HLS INTERFACE s_axilite port=len bundle=CTRL #pragma HLS INTERFACE s_axilite port=return bundle=CTRL data_t res; for (int i =0; i < N; i++) { #pragma HLS PIPELINE II=1 c[i] = *coef++; } for (int i = 0; i < len; i++) { #pragma HLS PIPELINE II=1 fir(&res,*x++); *y = res; y++; } }
这段代码是一个用于实现FIR滤波器的函数。下面是对每个部分的详细注释:
```cpp
#include "./fir.h"
```
这行代码包含了一个名为"fir.h"的头文件,用于定义FIR滤波器所需的数据类型和常量。
```cpp
coef_t c[N];
```
这行代码定义了一个长度为N的系数数组c,用于存储滤波器的系数。
```cpp
void fir(data_t *y, data_t x)
```
这行代码定义了一个名为fir的函数,它接受一个指向输出结果y的指针和一个输入x作为参数。
```cpp
#pragma HLS ARRAY_PARTITION variable=c complete dim=0
```
这行代码使用HLS指令,将系数数组c按照完全分区的方式进行分区。
```cpp
static data_t shift_reg[N];
```
这行代码定义了一个静态的长度为N的移位寄存器数组shift_reg,用于存储滤波器的历史输入数据。
```cpp
#pragma HLS ARRAY_PARTITION variable=shift_reg complete dim=0
```
这行代码使用HLS指令,将移位寄存器数组shift_reg按照完全分区的方式进行分区。
```cpp
acc_t acc;
int i;
acc = 0;
```
这行代码定义了一个累加器acc和一个整型变量i,并将累加器初始化为0。
```cpp
#pragma HLS PIPELINE II=1
```
这行代码使用HLS指令,指示编译器将以下for循环展开为流水线,每个步骤的间隔为1个时钟周期。
```cpp
for (i = N - 1; i >= 0; i--)
{
if (i == 0)
{
acc += x * c[0];
shift_reg[0] = x;
}
else
{
shift_reg[i] = shift_reg[i - 1];
acc += shift_reg[i] * c[i];
}
}
```
这段代码是FIR滤波器的核心算法部分。它使用一个for循环遍历滤波器的系数数组和移位寄存器数组,根据当前的系数和移位寄存器的值计算累加器的值,并更新移位寄存器中的值。
```cpp
*y = acc;
```
这行代码将累加器的值赋给输出结果y。
```cpp
void fir_wrap(data_t *y, data_t *x, int len, coef_t *coef)
```
这行代码定义了一个名为fir_wrap的函数,它接受指向输出结果y、输入x、输入长度len和系数数组coef的指针作为参数。
```cpp
#pragma HLS INTERFACE m_axi port=coef offset=slave depth=99
#pragma HLS INTERFACE m_axi port=x offset=slave depth=100
#pragma HLS INTERFACE m_axi port=y offset=slave depth=100
#pragma HLS INTERFACE s_axilite port=len bundle=CTRL
#pragma HLS INTERFACE s_axilite port=return bundle=CTRL
```
这段代码使用HLS指令,定义了函数fir_wrap的接口。它指定了系数数组coef、输入数组x和输出数组y的访问方式和传输深度,以及输入长度len和返回值的传输方式。
```cpp
data_t res;
for (int i =0; i < N; i++)
{
#pragma HLS PIPELINE II=1
c[i] = *coef++;
}
```
这段代码使用一个for循环将系数数组coef的值赋给数组c。在循环中使用HLS指令,将赋值操作展开为流水线,每个步骤的间隔为1个时钟周期。
```cpp
for (int i = 0; i < len; i++)
{
#pragma HLS PIPELINE II=1
fir(&res,*x++);
*y = res;
y++;
}
```
这段代码使用一个for循环对输入数组x中的每个元素进行滤波操作,并将结果存储在输出数组y中。在循环中使用HLS指令,将滤波操作展开为流水线,每个步骤的间隔为1个时钟周期。
阅读全文