python中pd.DataFrame
时间: 2023-08-14 10:06:52 浏览: 116
pyspark.sql.DataFrame与pandas.DataFrame之间的相互转换实例
5星 · 资源好评率100%
pd.DataFrame是Pandas库中的一个类,用于创建二维的表格型数据结构,称为DataFrame。DataFrame可以看作是由多个Series对象组成的数据表。
可以使用多种方式来创建DataFrame,包括从列表、字典、NumPy数组、其他DataFrame等数据结构创建。
以下是几种创建DataFrame的常见方式:
1. 从字典创建DataFrame:
```python
import pandas as pd
data = {'Name': ['Tom', 'John', 'Alice'],
'Age': [25, 30, 28],
'City': ['New York', 'London', 'Paris']}
df = pd.DataFrame(data)
print(df)
```
输出结果:
```
Name Age City
0 Tom 25 New York
1 John 30 London
2 Alice 28 Paris
```
2. 从列表创建DataFrame:
```python
import pandas as pd
data = [['Tom', 25, 'New York'],
['John', 30, 'London'],
['Alice', 28, 'Paris']]
df = pd.DataFrame(data, columns=['Name', 'Age', 'City'])
print(df)
```
输出结果:
```
Name Age City
0 Tom 25 New York
1 John 30 London
2 Alice 28 Paris
```
3. 从NumPy数组创建DataFrame:
```python
import pandas as pd
import numpy as np
data = np.array([['Tom', 25, 'New York'],
['John', 30, 'London'],
['Alice', 28, 'Paris']])
df = pd.DataFrame(data, columns=['Name', 'Age', 'City'])
print(df)
```
输出结果:
```
Name Age City
0 Tom 25 New York
1 John 30 London
2 Alice 28 Paris
```
DataFrame提供了许多功能,例如数据的选择、过滤、排序等,以便对数据进行处理和分析。
阅读全文