def __getitem__(self, index):
时间: 2023-10-25 22:03:29 浏览: 86
def __getitem__(self, index): 是一个特殊方法,它在定义一个类的时候可以被使用。这个方法允许我们在实例对象上使用索引访问元素的操作。当实例对象执行p[key操作时,就会调用这个方法。在这个方法中,我们可以自定义返回的结果,可以是类中的某个属性或者是其他需要的计算结果。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [【知识点】__getitem__()类理解](https://blog.csdn.net/echo_gou/article/details/120950776)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
相关问题
class Animedataset(data.Dataset): def __init__(self): self.img_list = os.listdir(data_path) self.transforms = transforms def __len__(self): return len(self.img_list) def __getitem__(self, index): img = os.path.join(data_path,self.img_list[index]) img = np.array(Image.open(img)) img = self.transforms(image=img)["image"] return img这段代码什么意思
这段代码定义了一个名为 `Animedataset` 的 PyTorch 数据集类,用于加载图像数据集。具体解释如下:
1. `__init__(self)`:构造函数,初始化数据集。在这里,首先获取数据集中所有图像的文件名列表 `self.img_list`。然后定义数据预处理的操作 `self.transforms`,这个操作在之前已经解释过了。
2. `__len__(self)`:返回数据集的大小,即数据集中包含的图像数量。
3. `__getitem__(self, index)`:获取指定索引的数据。在这里,首先根据索引获取对应图像的文件路径,然后使用PIL库读取图像,并将其转换为Numpy数组格式。接着,使用之前定义的数据预处理操作 `self.transforms` 对图像进行预处理,最后返回预处理后的图像数据。
这个类的作用是将数据集中的图像数据加载到内存中,并在每次训练时提供一个 batch 的数据。
class MyTrainData(torch.utils.data.Dataset): def __init__(self, img, transform=None): self.img = img self.transform = transform def __getitem__(self, index): img = self.img[index] img = torch.FloatTensor(img) return img def __len__(self): return len(self.img)
这是一个 PyTorch 中用于定义自定义训练数据集的类。其中,__init__ 方法用于初始化数据集,img 参数为输入的数据,transform 参数为对数据进行的变换操作;__getitem__ 方法则用于根据索引 index 获取对应的数据,并将其转换为 PyTorch 的 Tensor 对象;__len__ 方法则用于获取数据集的长度(即数据的数量)。通过这个类定义,我们可以使用 PyTorch 中的 DataLoader 对象来对数据进行批量读取和处理。
阅读全文