self.minus1 = (torch.ones(self.in_channels, self.out_channels, 1) * -1.000)解释

时间: 2024-05-17 22:17:03 浏览: 117
这是一个初始化模块中的一个操作,其中self.in_channels和self.out_channels分别代表输入和输出的通道数,这里的操作是创建一个大小为[self.in_channels, self.out_channels, 1]的张量,并将其中的所有元素赋值为-1.000。 这个操作的目的是为了初始化卷积层的权重。在卷积层中,每个输出通道都对应着一个卷积核,卷积核的每个参数都代表着该通道与输入通道之间的连接权重。通过将权重初始化为-1.000,可以使得卷积层在初始状态下对输入进行一定程度上的负面影响,从而更容易地训练出有效的卷积核。不过需要注意的是,这个操作并不是必须的,其效果也会受到具体应用场景和数据集等因素的影响。
相关问题

class BayarConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, padding=0): self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.minus1 = (torch.ones(self.in_channels, self.out_channels, 1) * -1.000) super(BayarConv2d, self).__init__() # only (kernel_size ** 2 - 1) trainable params as the center element is always -1 self.kernel = nn.Parameter(torch.rand(self.in_channels, self.out_channels, kernel_size ** 2 - 1), requires_grad=True) def bayarConstraint(self): self.kernel.data = self.kernel.permute(2, 0, 1) self.kernel.data = torch.div(self.kernel.data, self.kernel.data.sum(0)) self.kernel.data = self.kernel.permute(1, 2, 0) ctr = self.kernel_size ** 2 // 2 real_kernel = torch.cat((self.kernel[:, :, :ctr], self.minus1.to(self.kernel.device), self.kernel[:, :, ctr:]), dim=2) real_kernel = real_kernel.reshape((self.out_channels, self.in_channels, self.kernel_size, self.kernel_size)) return real_kernel def forward(self, x): x = F.conv2d(x, self.bayarConstraint(), stride=self.stride, padding=self.padding) return x这个类最后得到了什么

这个类实现了一个卷积神经网络层,其中使用了贝叶斯方法对卷积核进行约束,使其满足一定的先验分布。 通过类的初始化函数,用户可以指定输入通道数、输出通道数、卷积核大小、卷积步长和填充大小等参数。 在类的初始化函数中,首先通过类的成员变量存储输入通道数、输出通道数、卷积核大小、卷积步长和填充大小等参数。然后,使用 PyTorch 的 nn.Parameter 函数创建一个可训练的卷积核张量 self.kernel。这个张量的大小为 (in_channels, out_channels, kernel_size ** 2 - 1),其中 kernel_size ** 2 - 1 表示卷积核中除去中心位置的参数数量,因为中心位置的参数总是固定为 -1。 在 BayarConv2d 类中,还定义了一个名为 bayarConstraint 的函数,用于对卷积核进行约束。在这个函数中,首先将 self.kernel 的维度转换为 (kernel_size ** 2 - 1, in_channels, out_channels),然后对 self.kernel 的第一个维度进行归一化,使得每个卷积核的参数总和为 1。接着,将 self.kernel 的维度再次转换为 (in_channels, out_channels, kernel_size ** 2 - 1),然后使用 torch.cat() 函数将中心位置的 -1 插入到 self.kernel 的第三个维度的中心位置,得到最终的约束卷积核 real_kernel。最后,将 real_kernel 的维度转换为 (out_channels, in_channels, kernel_size, kernel_size)。 最后,定义了 forward 函数,实现了 BayarConv2d 类的前向传播过程。在 forward 函数中,使用 PyTorch 的 F.conv2d() 函数对输入进行卷积操作,其中卷积核为调用 bayarConstraint 函数得到的约束卷积核 real_kernel。

def bayarConstraint(self): self.kernel.data = self.kernel.permute(2, 0, 1) self.kernel.data = torch.div(self.kernel.data, self.kernel.data.sum(0)) self.kernel.data = self.kernel.permute(1, 2, 0) ctr = self.kernel_size ** 2 // 2 real_kernel = torch.cat((self.kernel[:, :, :ctr], self.minus1.to(self.kernel.device), self.kernel[:, :, ctr:]), dim=2) real_kernel = real_kernel.reshape((self.out_channels, self.in_channels, self.kernel_size, self.kernel_size)) return real_kernel解释

这是一个用于实现Bayar约束的函数。在计算机视觉中,Bayar约束是一种用于卷积神经网络中的卷积核(filter)优化的方法,目的是使得卷积核在进行特征提取时更加稳定,同时也可以降低计算复杂度。具体来说,该函数的实现过程大致如下: 1. 将卷积核的维度从 (out_channels, in_channels, kernel_size, kernel_size) 调整为 (kernel_size, out_channels, in_channels)。 2. 对卷积核的每个通道进行归一化处理,即将每个通道的数值除以所有通道数值之和,使得卷积核的权重总和为1,以便更好地进行特征提取。 3. 再将卷积核的维度调整回到原始的 (out_channels, in_channels, kernel_size, kernel_size)。 4. 最后,在卷积核的中央位置插入一个值为-1的元素,以实现Bayar约束。这个值为-1的元素的作用是在进行特征提取时,让卷积核更加关注中心区域的特征,从而提高特征提取的效果。 5. 将处理后的卷积核的尺寸调整为 (out_channels, in_channels, kernel_size, kernel_size),并返回结果。 需要注意的是,这个函数是针对卷积神经网络中的卷积核进行优化的,所以必须在模型训练过程中使用。
阅读全文

相关推荐

import pandas as pd import warnings import sklearn.datasets import sklearn.linear_model import matplotlib import matplotlib.font_manager as fm import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = pd.read_excel(r'C:\Users\Lenovo\Desktop\data.xlsx') print(data.info()) fig = plt.figure(figsize=(10, 8)) sns.heatmap(data.corr(), cmap="YlGnBu", annot=True) plt.title('相关性分析热力图') plt.rcParams['axes.unicode_minus'] = False plt.rcParams['font.sans-serif'] = 'SimHei' plt.show() y = data['y'] x = data.drop(['y'], axis=1) print('************************输出新的特征集数据***************************') print(x.head()) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) def relu(x): output=np.maximum(0, x) return output def relu_back_propagation(derror_wrt_output,x): derror_wrt_dinputs = np.array(derror_wrt_output, copy=True) derror_wrt_dinputs[x <= 0] = 0 return derror_wrt_dinputs def activated(activation_choose,x): if activation_choose == 'relu': return relu(x) def activated_back_propagation(activation_choose, derror_wrt_output, output): if activation_choose == 'relu': return relu_back_propagation(derror_wrt_output, output) class NeuralNetwork: def __init__(self, layers_strcuture, print_cost = False): self.layers_strcuture = layers_strcuture self.layers_num = len(layers_strcuture) self.param_layers_num = self.layers_num - 1 self.learning_rate = 0.0618 self.num_iterations = 2000 self.x = None self.y = None self.w = dict() self.b = dict() self.costs = [] self.print_cost = print_cost self.init_w_and_b() def set_learning_rate(self,learning_rate): self.learning_rate=learning_rate def set_num_iterations(self, num_iterations): self.num_iterations = num_iterations def set_xy(self, input, expected_output): self.x = input self.y = expected_output

最新推荐

recommend-type

Oracle_SQL学习笔记.doc

- PL/SQL中的`FORALL`语句支持批量绑定变量,如`FORALL i IN 1..x.COUNT DML`,但只能用于单条DML语句。 这些是Oracle SQL学习中的一些基础和进阶知识点,它们对于高效地管理Oracle数据库至关重要。理解并熟练掌握...
recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

RM1135开卡工具B17A

RM1135开卡工具B17A
recommend-type

毕业设计&课设_宿舍管理系统:计算机毕业设计项目.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。