e[d[k]] = k

时间: 2023-11-20 19:07:31 浏览: 20
这段代码将字典`d`中的键值对进行翻转,保存到字典`e`中。具体来说,对于字典`d`中的每个键值对`(k, v)`,我们将其翻转为`(v, k)`,并保存到字典`e`中。这样做的效果是,将字典`d`中的键作为`e`中的值,将字典`d`中的值作为`e`中的键。 下面是这段代码的详细解释: 1. `e = {}`:创建一个空字典`e`,用于保存翻转后的键值对。 2. `for k in d: e[d[k]] = k`:遍历字典`d`中的所有键值对,将其翻转并保存到字典`e`中。具体来说,对于字典中的每个键值对`(k, v)`,我们将其翻转为`(v, k)`,并保存到字典`e`中。这里使用了字典的索引操作`d[k]`来获取键`k`对应的值,然后将其作为字典`e`中的键;同时使用`k`作为字典`e`中的值。 例如,如果字典`d`为`{1: 'a', 2: 'b', 3: 'c'}`,那么经过这段代码的处理后,字典`e`将变为`{'a': 1, 'b': 2, 'c': 3}`。 需要注意的是,如果字典`d`中存在两个或多个键对应的值相同,那么在将其翻转为字典`e`中的键值对时,只会保留最后一个键对应的值。这是因为字典中的键必须是唯一的,如果存在重复的键,后面的键值对会覆盖前面的键值对。
相关问题

%利用KSVD算法进行字典更新,已知初始化字典为D,稀疏编码矩阵为X for k = 204:-1:1 E_k = Y; %计算误差矩阵 for k1 = 204:-1:1 if k1 ~= k E_k = E_k-D(:,k1)*X(k1,:); end end if norm(X(k,:)) ~= 0 X1 = []; E_k1 = []; index = X(k,:) ~= 0; X1 = X(k,index); E_k1 = E_k(:,index); [U,S,V] = svd(E_k1); D(:,k) = U(:,1); X1 = S(1)*V(:,1)'; k3 = 1; for k2 = 1:size(X,2) if X(k,k2) ~= 0 X(k,k2) = X1(1,k3); k3 = k3+1; end end end end end

这段代码实现了使用KSVD算法进行字典更新的过程。具体来说,它首先遍历每一个字典列(即每一个原子),对于当前的字典列,它会计算当前字典对所有样本的重构误差矩阵E_k,然后使用SVD分解将E_k分解为U*S*V',并将U的第一列作为当前字典列的更新。同时,它还会根据稀疏编码矩阵X的信息,对更新后的字典列进行相应的更新。最终,整个过程会遍历所有字典列,以完成整个字典的更新。

L(A∗ k+1, Ek ∗ +1, Yk ∗ , µk) = min A,E L(A, E, Yk ∗ , µk) ≤ min A+E=D L(A, E, Yk ∗ , µk) = min A+E=D (k Ak ∗ + λk Ek 1) = f ∗ ,这个不等式怎么证明的?

这个不等式是通过以下步骤证明的: 1. 首先,我们有 $L(A^{*}_{k+1}, E^{*}_{k+1}, Y^{*}_{k}, \mu_k) \leq L(A, E, Y^{*}_{k}, \mu_k)$,其中 $A^{*}_{k+1}, E^{*}_{k+1}$ 是最优解,$Y^{*}_{k}$ 是固定的,$\mu_k$ 是给定的。 2. 接着,我们可以将 $A$ 和 $E$ 分别表示为 $A = D - E$ 和 $E = D - A$,其中 $D$ 是一个常数。 3. 我们将上一步中的 $A$ 和 $E$ 代入不等式 $L(A, E, Y^{*}_{k}, \mu_k) \leq L(A^{*}_{k+1}, E^{*}_{k+1}, Y^{*}_{k}, \mu_k)$ 中,得到 $L(D-E, E, Y^{*}_{k}, \mu_k) \leq L(A^{*}_{k+1}, E^{*}_{k+1}, Y^{*}_{k}, \mu_k)$。 4. 我们注意到 $L(D-E, E, Y^{*}_{k}, \mu_k) = L(A^{*}_{k+1}+E^{*}_{k+1}-D, D-E^{*}_{k+1}, Y^{*}_{k}, \mu_k)$,因为 $A^{*}_{k+1}+E^{*}_{k+1}-D = D - (D-A^{*}_{k+1}-E^{*}_{k+1}) = D - E^{*}_{k+1}$。 5. 将上一步得到的等式代入 $L(D-E, E, Y^{*}_{k}, \mu_k) \leq L(A^{*}_{k+1}, E^{*}_{k+1}, Y^{*}_{k}, \mu_k)$ 中,得到 $L(D-E^{*}_{k+1}, E^{*}_{k+1}, Y^{*}_{k}, \mu_k) \leq L(A^{*}_{k+1}, E^{*}_{k+1}, Y^{*}_{k}, \mu_k)$。 6. 我们知道 $L(A, E, Y^{*}_{k}, \mu_k)$ 是关于 $A$ 和 $E$ 的凸函数,因此 $L(D-E^{*}_{k+1}, E^{*}_{k+1}, Y^{*}_{k}, \mu_k) \geq L(kA^{*}_{k}+\lambda_kE^{*}_{1}, (1-k)A^{*}_{k}+\lambda_kE^{*}_{1}, Y^{*}_{k}, \mu_k)$,其中 $\lambda_k = D/k$。 7. 最后,我们注意到 $kA^{*}_{k}+\lambda_kE^{*}_{1} + (1-k)A^{*}_{k}+\lambda_kE^{*}_{1} = D$,因此 $L(kA^{*}_{k}+\lambda_kE^{*}_{1}, (1-k)A^{*}_{k}+\lambda_kE^{*}_{1}, Y^{*}_{k}, \mu_k) = L(D-E^{*}_{k+1}, E^{*}_{k+1}, Y^{*}_{k}, \mu_k)$。 8. 将上一步得到的等式代入 $L(D-E^{*}_{k+1}, E^{*}_{k+1}, Y^{*}_{k}, \mu_k) \geq L(kA^{*}_{k}+\lambda_kE^{*}_{1}, (1-k)A^{*}_{k}+\lambda_kE^{*}_{1}, Y^{*}_{k}, \mu_k)$ 中,得到 $L(D-E^{*}_{k+1}, E^{*}_{k+1}, Y^{*}_{k}, \mu_k) \geq f^{*}$,其中 $f^{*}$ 是一个常数。 因此,我们得到了不等式 $L(A^{*}_{k+1}, E^{*}_{k+1}, Y^{*}_{k}, \mu_k) \geq f^{*}$,证毕。

相关推荐

优化以下代码% 设置参数 t = 0.03; % 时间范围,计算到0.03秒 x = 1; y = 1; % 空间范围,0-1米 m = 320; % 时间t方向分320个格子 n = 32; % 空间x方向分32个格子 k = 32; % 空间y方向分32个格子 ht = t / (m - 1); % 时间步长dt hx = x / (n - 1); % 空间步长dx hy = y / (k - 1); % 空间步长dy hx2 = hx^2; hy2 = hy^2; % 初始化矩阵 u = zeros(m, n, k); % 设置边界 [x, y] = meshgrid(0:hx:1, 0:hy:1); u(1, :, :) = sin(4 * pi * x) + cos(4 * pi * y); % 按照公式进行差分 for ii = 1 : m - 1 u_prev = u(ii, :, :); u_next = u_prev; for kk = 2 : k - 1 u_prev_k = u_prev(:, kk); u_next_k = u_next(:, kk); u_prev_kk_1 = u_prev(:, kk + 1); u_prev_kk_1(1) = u_prev_k(1); u_prev_kk_1(end) = u_prev_k(end); u_prev_kk_2 = u_prev(:, kk - 1); u_prev_kk_2(1) = u_prev_k(1); u_prev_kk_2(end) = u_prev_k(end); A = diag(ones(n - 3, 1), 1) - 2 * diag(ones(n - 2, 1)) + diag(ones(n - 3, 1), -1); B = diag(ones(n - 3, 1), 1) + diag(ones(n - 3, 1), -1) + 2 * diag(ones(n - 2, 1)); C = diag(ones(n - 3, 1), 1) - 2 * diag(ones(n - 2, 1)) + diag(ones(n - 3, 1), -1); D = u_prev_kk_1 / hy2; E = u_prev_kk_2 / hy2; F = u_prev_k / hx2 + 1 / ht; G = u_prev_k / hx2 - 1 / ht; H = u_prev_kk_1 / hy2 + u_prev_kk_2 / hy2 + 1 / ht; I = u_prev_kk_1 / hy2 + u_prev_kk_2 / hy2 - 1 / ht; K = B - ht * F; L = B + ht * G; M = A + ht * D; N = C - ht * E; u_next(:, 2 : end - 1, kk) = thomas(K, M, N, H); u_next(:, 2 : end - 1, kk) = thomas(L, N, M, I); end u(ii + 1, :, :) = u_next; end % 绘制图像 parfor i = 1 : m figure(1); mesh(x, y, reshape(u(i, :, :), [n k])); axis([0 1 0 1 -2 2]); end % Thomas 算法求解三对角线性方程组 function x = thomas(A, B, C, D) n = length(D); for k = 2 : n m = A(k) / B(k - 1); B(k) = B(k) - m * C(k - 1); D(k) = D(k) - m * D(k - 1); end x(n) = D(n) / B(n); for k = n - 1 : -1 : 1 x(k) = (D(k) - C(k) * x(k + 1)) / B(k); end end

最新推荐

recommend-type

合信TP-i系列HMI触摸屏CAD图.zip

合信TP-i系列HMI触摸屏CAD图
recommend-type

Mysql 数据库操作技术 简单的讲解一下

讲解数据库操作方面的基础知识,基于Mysql的,不是Oracle
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到