请在这个代码中加入opencv稀释光流算法
时间: 2024-03-21 20:43:10 浏览: 53
好的,以下是加入opencv稀释光流算法的代码示例:
```python
import cv2
# 初始化光流法参数
lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# 读取视频帧
cap = cv2.VideoCapture('video.mp4')
ret, old_frame = cap.read()
# 转换为灰度图像
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
# 初始化图像点
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)
# 创建随机颜色
color = (0, 255, 0)
while True:
# 读取视频帧
ret, frame = cap.read()
# 转换为灰度图像
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 计算光流
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# 选择好的点
good_new = p1[st == 1]
good_old = p0[st == 1]
# 绘制轨迹
for i, (new, old) in enumerate(zip(good_new, good_old)):
a, b = new.ravel()
c, d = old.ravel()
mask = cv2.line(mask, (a, b), (c, d), color, 2)
frame = cv2.circle(frame, (a, b), 5, color, -1)
# 显示图像
img = cv2.add(frame, mask)
cv2.imshow('frame', img)
# 更新图像点
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1, 1, 2)
# 等待按键
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放资源并关闭窗口
cap.release()
cv2.destroyAllWindows()
```
这段代码使用了cv2.calcOpticalFlowPyrLK函数来计算光流,其中lk_params参数为光流法的参数,p0为图像点,good_new为优化后的点,good_old为优化前的点。同时,还绘制了轨迹和点。
阅读全文