如何建立带权的邻接表

时间: 2023-11-27 22:10:08 浏览: 63
建立带权的邻接表需要在存储结构体中增加一个表示边权值的成员变量,同时在添加边时也要记录边的权值。以下是一个示例代码: ``` struct Edge { int to; // 表示连接的节点编号 int weight; // 表示边的权值 Edge* next; // 指向下一个邻接节点的指针 }; struct Node { int id; // 节点编号 Edge* next; // 指向第一个邻接节点的指针 }; // 邻接表带权的数据结构 vector<Node> graph; // 添加一条带权边 void addEdge(int u, int v, int w) { Edge* e = new Edge; e->to = v; e->weight = w; e->next = graph[u].next; graph[u].next = e; } ``` 以上代码中,`Edge` 结构体中增加了一个成员变量 `weight`,用于表示边的权值。在添加边时,除了记录连接的节点编号外,还需要记录边的权值,即将 `w` 赋值给 `Edge` 结构体中的 `weight` 成员变量。 建立带权的邻接表的过程与建立普通邻接表的过程类似,只需在添加边时增加权值的记录即可。
相关问题

网络的带权邻接表存储结构

网络的带权邻接表是一种图数据结构,常用于表示和操作带有权重的图,例如在图算法中。它主要由以下几个部分组成: 1. **顶点(Vertices)**:每个顶点代表图中的一个实体,通常是一个数字或字符串标识。 2. **边(Edges)**:每条边表示两个顶点之间的连接,包括起点和终点,以及一个权重值。权重可以是任意实数,比如表示距离、成本等。 3. **邻接表**:对于每个顶点,维护一个列表,称为邻接表,其中包含所有与其相连的边及其权重。邻接表可以是链式结构,每个边作为一个节点,包含指向起点、终点和权重的信息。 - 对于无向图,邻接表会为每个顶点维护双向边。 - 对于有向图,邻接表可能只记录出度信息,即从某顶点出发的所有边。 这种存储结构的优势在于: - **空间效率**:如果图是稀疏的(即边的数量远小于可能的顶点对数量),带权邻接表可以节省大量空间,因为只存储实际存在的边。 - **操作效率**:对于查找从一个顶点到另一个顶点的最短路径、加权遍历等操作,通过直接访问邻接表非常高效。

图的带权邻接表广度优先遍历c语言

以下是使用带权邻接表实现图的广度优先遍历的C语言代码: ```c #include <stdio.h> #include <stdlib.h> #define MaxVertexNum 100 // 最大顶点数 typedef int Vertex; // 顶点类型为整型 typedef int WeightType; // 权重类型为整型 // 边结构体 typedef struct ENode { Vertex v1, v2; // 有向边<v1, v2> WeightType weight; // 权重 }ENode; // 邻接点结构体 typedef struct AdjVNode { Vertex adjv; // 邻接点下标 WeightType weight; // 权重 struct AdjVNode* next; // 指向下一个邻接点的指针 }AdjVNode; // 顶点结构体 typedef struct Vnode { AdjVNode* firstedge; // 指向第一个邻接点的指针 }Vnode, AdjList[MaxVertexNum]; // 图结构体 typedef struct GNode { int Nv; // 顶点数 int Ne; // 边数 AdjList G; // 邻接表 }GNode, *PtrToGNode; typedef PtrToGNode Graph; int visited[MaxVertexNum]; // 访问标记数组 // 创建图并初始化 Graph CreateGraph(int VertexNum) { Vertex v; Graph G = (Graph)malloc(sizeof(GNode)); G->Nv = VertexNum; G->Ne = 0; for (v = 0; v < G->Nv; v++) G->G[v].firstedge = NULL; return G; } // 插入边 void InsertEdge(Graph G, ENode* e) { AdjVNode* newnode; // 为v1插入边<v1, v2> newnode = (AdjVNode*)malloc(sizeof(AdjVNode)); newnode->adjv = e->v2; newnode->weight = e->weight; newnode->next = G->G[e->v1].firstedge; G->G[e->v1].firstedge = newnode; // 为v2插入边<v2, v1>(无向图) newnode = (AdjVNode*)malloc(sizeof(AdjVNode)); newnode->adjv = e->v1; newnode->weight = e->weight; newnode->next = G->G[e->v2].firstedge; G->G[e->v2].firstedge = newnode; } // 构造图 Graph BuildGraph() { Graph G; ENode* e; Vertex v; int Nv, i; printf("请输入顶点数: "); scanf("%d", &Nv); G = CreateGraph(Nv); printf("请输入边数: "); scanf("%d", &(G->Ne)); if (G->Ne != 0) { e = (ENode*)malloc(sizeof(ENode)); printf("请输入每条边的起点、终点和权重: "); for (i = 0; i < G->Ne; i++) { scanf("%d %d %d", &e->v1, &e->v2, &e->weight); InsertEdge(G, e); } } // 如果顶点有数据的话,读入数据 for (v = 0; v < G->Nv; v++) scanf("%d", &(G->G[v].data)); return G; } // 遍历顶点v所在的连通块 void BFS(Graph G, Vertex v) { AdjVNode* W; Queue Q = CreateQueue(); // 创建空队列 printf("访问顶点 %d\n", v); visited[v] = 1; // 标记为已访问 Enqueue(Q, v); // 将v入队列 while (!IsEmpty(Q)) { // 只要队列不空 v = Dequeue(Q); // 将队首顶点出队列 for (W = G->G[v].firstedge; W; W = W->next) { // 对v的每个邻接点W->adjv if (!visited[W->adjv]) { // 若W未被访问 printf("访问顶点 %d\n", W->adjv); visited[W->adjv] = 1; // 标记为已访问 Enqueue(Q, W->adjv); // 将W入队列 } } } } // 遍历图 void BFSTraverse(Graph G) { Vertex v; for (v = 0; v < G->Nv; v++) visited[v] = 0; // 初始化访问标记数组 for (v = 0; v < G->Nv; v++) { if (!visited[v]) // 若顶点v未被访问 BFS(G, v); // 访问顶点v所在的连通块 } } ``` 其中,`ENode`表示边结构体,包含两个顶点和权重;`AdjVNode`表示邻接点结构体,包含邻接点下标、权重和指向下一个邻接点的指针;`Vnode`表示顶点结构体,包含指向第一个邻接点的指针;`AdjList`表示邻接表,是一个大小为`MaxVertexNum`的`Vnode`数组;`GNode`表示图结构体,包含顶点数、边数和邻接表。`CreateGraph`函数创建图并初始化,`InsertEdge`函数插入边,`BuildGraph`函数构造图,`BFS`函数遍历顶点v所在的连通块,`BFSTraverse`函数遍历图。
阅读全文

相关推荐

最新推荐

recommend-type

实现带权图的邻接表存储+图的遍历算法

本文将详细介绍带权图的邻接表存储和图的遍历算法。 一、带权图的邻接表存储 邻接表是一种常用的图存储方式,它将图的顶点和弧信息存储在一个数组中。每个顶点对应一个链表,链表中存储着该顶点的邻接弧信息。邻接...
recommend-type

lamp-cloud 基于jdk21、jdk17、jdk8 + SpringCloud + SpringBoot 开发的微服务中后台快速开发平台,专注于多租户(SaaS架构)解决方案

lamp-cloud 基于jdk21、jdk17、jdk8 + SpringCloud + SpringBoot 开发的微服务中后台快速开发平台,专注于多租户(SaaS架构)解决方案,亦可作为普通项目(非SaaS架构)的基础开发框架使用,目前已实现插拔式数据库隔离、SCHEMA隔离、字段隔离 等租户隔离方案。
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【损失函数与批量梯度下降】:分析批量大小对损失函数影响,优化模型学习路径

![损失函数(Loss Function)](https://img-blog.csdnimg.cn/20190921134848621.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80Mzc3MjUzMw==,size_16,color_FFFFFF,t_70) # 1. 损失函数与批量梯度下降基础 在机器学习和深度学习领域,损失函数和批量梯度下降是核心概念,它们是模型训练过程中的基石。理解它们的基础概念对于构建
recommend-type

在设计高性能模拟电路时,如何根据应用需求选择合适的运算放大器,并评估供电对电路性能的影响?

在选择运算放大器以及考虑供电对模拟电路性能的影响时,您需要掌握一系列的关键参数和设计准则。这包括运算放大器的增益带宽积(GBWP)、输入偏置电流、输入偏置电压、输入失调电压、供电范围、共模抑制比(CMRR)、电源抑制比(PSRR)等。合理的选择运算放大器需考虑电路的输入和输出范围、负载大小、信号频率、温度系数、噪声水平等因素。而供电对性能的影响则体现在供电电压的稳定性、供电噪声、电源电流消耗、电源抑制比等方面。为了深入理解这些概念及其在设计中的应用,请参考《模拟电路设计:艺术、科学与个性》一书,该书由模拟电路设计领域的大师Jim Williams所著。您将通过书中的丰富案例学习如何针对不同应用