给出一个三输入特征三输出的基于ResNet网络逼近预测代码
时间: 2023-05-29 14:01:47 浏览: 141
由于缺乏题目中所需的具体数据集和需求,暂时无法提供完整的代码。以下是一个基于PyTorch实现的三输入一输出的ResNet网络的代码示例,供参考:
```python
# 定义ResNet网络结构
import torch.nn as nn
import torch.nn.functional as F
class ResNet(nn.Module):
def __init__(self):
super(ResNet, self).__init__()
# 模块1
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# 模块2
self.layer1 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
# 模块3
self.layer2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True)
)
# 模块4
self.layer3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True)
)
# 模块5
self.layer4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True)
)
# 全连接层
self.fc = nn.Linear(512 * 7 * 7, 3)
def forward(self, x1, x2, x3):
x = torch.cat((x1, x2, x3), dim=1) # 将三个输入特征拼接在一起
# 前向传播过程
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x) + x # 将输出与输入残差相加
x = self.layer2(x) + x
x = self.layer3(x) + x
x = self.layer4(x) + x
x = F.avg_pool2d(x, kernel_size=7).view(x.size(0), -1)
x = self.fc(x)
return x
```
可以看到,这个ResNet网络接收三个输入特征x1、x2和x3作为输入,通过将它们拼接在一起,形成一个输入通道数为3的三维张量。网络经过一系列卷积、批归一化和激活等操作后,输出一个三维向量作为最终预测结果。在前向传播过程中,每个模块的输出都与输入残差相加,增加了网络的非线性可塑性,提高了网络拟合能力。
阅读全文