给出一个以ResNet为模型的具有三特征输入{x,y,z}三输出{t1,t2,t3}的使用pytorch的训练代码示例
时间: 2023-05-29 20:07:48 浏览: 83
pytorch环境下ResNet示例代码
以下是一个以ResNet为模型的具有三特征输入{x,y,z}三输出{t1,t2,t3}的使用pytorch的训练代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
# 定义ResNet模型
class ResNet(nn.Module):
def __init__(self):
super(ResNet, self).__init__()
self.resnet = models.resnet18(pretrained=True)
self.fc1 = nn.Linear(1000, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 3)
def forward(self, x, y, z):
x = self.resnet(x)
y = self.resnet(y)
z = self.resnet(z)
out = torch.cat((x, y, z), dim=1)
out = self.fc1(out)
out = self.fc2(out)
out = self.fc3(out)
return out
# 定义训练函数
def train(model, train_loader, criterion, optimizer):
model.train()
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
x, y, z = inputs
optimizer.zero_grad()
outputs = model(x, y, z)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
return running_loss / len(train_loader)
# 定义测试函数
def test(model, test_loader, criterion):
model.eval()
running_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
inputs, labels = data
x, y, z = inputs
outputs = model(x, y, z)
loss = criterion(outputs, labels)
running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
return running_loss / len(test_loader), correct / total
# 加载数据
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False)
# 定义模型、损失函数和优化器
model = ResNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 训练模型
for epoch in range(10):
train_loss = train(model, train_loader, criterion, optimizer)
test_loss, test_acc = test(model, test_loader, criterion)
print('Epoch: {}, Train Loss: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'.format(epoch+1, train_loss, test_loss, test_acc))
```
阅读全文