def test(model, path): model.eval() mean_loss = [] for s in ['val', 'test']: image_root = '{}/{}'.format(path, s) gt_root = '{}/{}'.format(path, s) test_loader = test_dataset(image_root, gt_root) dice_bank = [] iou_bank = [] loss_bank = [] acc_bank = [] for i in range(test_loader.size): image, gt = test_loader.load_data() image = image.cuda() with torch.no_grad(): _, _, res = model(image) loss = structure_loss(res, torch.tensor(gt).unsqueeze(0).unsqueeze(0).cuda()) res = res.sigmoid().data.cpu().numpy().squeeze() gt = 1*(gt>0.5) res = 1*(res > 0.5) dice = mean_dice_np(gt, res) iou = mean_iou_np(gt, res) acc = np.sum(res == gt) / (res.shape[0]*res.shape[1]) loss_bank.append(loss.item()) dice_bank.append(dice) iou_bank.append(iou) acc_bank.append(acc) print('{} Loss: {:.4f}, Dice: {:.4f}, IoU: {:.4f}, Acc: {:.4f}'. format(s, np.mean(loss_bank), np.mean(dice_bank), np.mean(iou_bank), np.mean(acc_bank))) mean_loss.append(np.mean(loss_bank)) return mean_loss[0] 中文解释每一句
时间: 2024-04-28 22:26:10 浏览: 130
这段代码是用于测试一个图像分割模型的性能。首先,模型被设置为评估模式,接着对于验证集和测试集分别进行测试。数据集的路径被设置为image_root和gt_root。然后,使用test_dataset函数加载测试集的数据。接下来,对于每一个样本,图像和标注被加载并送入模型进行预测。计算预测结果和标注之间的结构损失并将结果转换为numpy数组。计算Dice, IoU和准确率等性能度量,并将其存储在相应的bank中。最后,输出测试集上的平均损失,Dice, IoU和准确率等性能度量。整个测试过程是在无梯度下进行的。函数的返回值是验证集上的平均损失。
相关问题
标签字段名称调整:将 file_name 和 label 改为 文件名 和 标签,以匹配 JSON 文件中的实际字段名称。
为了使代码与 JSON 文件中的实际字段名称匹配,需要对以下部分进行修改:
1. **加载标签数据时**:
- 将 `file_name` 字段改为 `文件名`。
- 将 `label` 字段改为 `标签`。
2. **生成提交文件时**:
- 将 `filename` 列改为 `文件名`。
- 将 `label` 列改为 `标签`。
以下是修改后的代码:
```python
import os
import json
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, models
from PIL import Image
import pandas as pd
from sklearn.metrics import accuracy_score, f1_score
# 数据集路径
data_dir = 'C:/Users/24067/Desktop/peach_split'
train_dir = os.path.join(data_dir, 'train')
val_dir = os.path.join(data_dir, 'val')
test_dir = os.path.join(data_dir, 'test')
# 标签文件路径
train_label_path = 'C:/Users/24067/Desktop/train_label.json'
val_label_path = 'C:/Users/24067/Desktop/val_label.json'
# 加载标签数据
with open(train_label_path, 'r') as f:
train_labels = json.load(f)
with open(val_label_path, 'r') as f:
val_labels = json.load(f)
# 调整标签字典的键值
train_labels = {item['文件名']: item['标签'] for item in train_labels}
val_labels = {item['文件名']: item['标签'] for item in val_labels}
# 定义数据集类
class PeachDataset(Dataset):
def __init__(self, data_dir, label_dict, transform=None):
self.data_dir = data_dir
self.label_dict = label_dict
self.transform = transform
self.image_files = list(label_dict.keys())
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
img_name = self.image_files[idx]
img_path = os.path.join(self.data_dir, img_name)
image = Image.open(img_path).convert('RGB')
label = self.label_dict[img_name]
if self.transform:
image = self.transform(image)
return image, label
# 数据预处理
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 创建数据集对象
train_dataset = PeachDataset(train_dir, train_labels, transform=transform)
val_dataset = PeachDataset(val_dir, val_labels, transform=transform)
# 创建数据加载器
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
# 定义模型
model = models.resnet18(pretrained=True)
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, 4) # 4个类别:特级、一级、二级、三级
model = model.to('cuda' if torch.cuda.is_available() else 'cpu')
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
def train_model(model, criterion, optimizer, num_epochs=10):
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for inputs, labels in train_loader:
inputs, labels = inputs.to('cuda' if torch.cuda.is_available() else 'cpu'), labels.to('cuda' if torch.cuda.is_available() else 'cpu')
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f'Epoch {epoch + 1}/{num_epochs}, Loss: {running_loss / len(train_loader)}')
# 评估模型
def evaluate_model(model, dataloader):
model.eval()
all_preds = []
all_labels = []
with torch.no_grad():
for inputs, labels in dataloader:
inputs, labels = inputs.to('cuda' if torch.cuda.is_available() else 'cpu'), labels.to('cuda' if torch.cuda.is_available() else 'cpu')
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
accuracy = accuracy_score(all_labels, all_preds)
f1 = f1_score(all_labels, all_preds, average='weighted')
return accuracy, f1
# 训练模型
train_model(model, criterion, optimizer, num_epochs=10)
# 评估模型
accuracy, f1 = evaluate_model(model, val_loader)
print(f'Validation Accuracy: {accuracy:.4f}')
print(f'Validation F1 Score: {f1:.4f}')
# 保存模型
torch.save(model.state_dict(), 'peach_grading_model.pth')
# 生成提交文件
def generate_submission(model, test_dir, sample_submission_path):
model.eval()
submission = pd.read_csv(sample_submission_path)
test_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
with torch.no_grad():
for i, filename in enumerate(submission['文件名']):
img_path = os.path.join(test_dir, filename)
image = Image.open(img_path).convert('RGB')
image = test_transform(image).unsqueeze(0).to('cuda' if torch.cuda.is_available() else 'cpu')
output = model(image)
_, pred = torch.max(output, 1)
submission.at[i, '标签'] = int(pred.item())
submission.to_csv('submission.csv', index=False)
# 生成并保存提交文件
generate_submission(model, test_dir, 'C:/Users/24067/Desktop/sample_submission.csv')
```
### 主要修改点:
1. **加载标签数据时**:
```python
train_labels = {item['文件名']: item['标签'] for item in train_labels}
val_labels = {item['文件名']: item['标签'] for item in val_labels}
```
2. **生成提交文件时**:
```python
for i, filename in enumerate(submission['文件名']):
...
submission.at[i, '标签'] = int(pred.item())
```
这些修改确保了代码中的字段名称与 JSON 文件中的实际字段名称一致。
阅读全文