A*三维路径规划python
时间: 2023-09-05 08:06:50 浏览: 130
路径规划A*算法 python实现
以下是一个简单的A*三维路径规划python实现的示例代码:
```python
import heapq
import math
class Node:
def __init__(self, x, y, z):
self.x = x
self.y = y
self.z = z
self.g = 0
self.h = 0
self.parent = None
def f(self):
return self.g + self.h
def __lt__(self, other):
return self.f() < other.f()
def get_neighbors(node, step_size):
neighbors = []
for dx in [-step_size, 0, step_size]:
for dy in [-step_size, 0, step_size]:
for dz in [-step_size, 0, step_size]:
if dx == dy == dz == 0:
continue
neighbor = Node(node.x + dx, node.y + dy, node.z + dz)
neighbors.append(neighbor)
return neighbors
def heuristic(node, goal):
return math.sqrt((node.x - goal.x) ** 2 + (node.y - goal.y) ** 2 + (node.z - goal.z) ** 2)
def a_star(start, goal, step_size, obstacles):
open_set = []
closed_set = set()
heapq.heappush(open_set, start)
while open_set:
current = heapq.heappop(open_set)
if current == goal:
path = []
while current:
path.append(current)
current = current.parent
return path[::-1]
closed_set.add(current)
for neighbor in get_neighbors(current, step_size):
if not (0 <= neighbor.x < 100 and 0 <= neighbor.y < 100 and 0 <= neighbor.z < 100):
continue
if neighbor in obstacles:
continue
if neighbor in closed_set:
continue
tentative_g = current.g + heuristic(current, neighbor)
if neighbor not in open_set or tentative_g < neighbor.g:
neighbor.g = tentative_g
neighbor.h = heuristic(neighbor, goal)
neighbor.parent = current
if neighbor not in open_set:
heapq.heappush(open_set, neighbor)
return None
start = Node(0, 0, 0)
goal = Node(99, 99, 99)
step_size = 1
obstacles = [Node(50, 50, 50), Node(51, 50, 50), Node(50, 51, 50), Node(50, 50, 51)]
path = a_star(start, goal, step_size, obstacles)
if path is None:
print("No path found")
else:
for node in path:
print(node.x, node.y, node.z)
```
该示例代码实现了一个A*算法的函数,该函数接受起始点、目标点、步长和障碍物列表作为输入,并返回一条从起始点到目标点的路径。在示例中,障碍物被硬编码为一个节点列表。函数中的get_neighbors函数计算当前节点的所有可行邻居节点。heuristic函数计算两个节点之间的启发式距离。最后,函数使用堆来实现open set的排序,以便更高效地搜索路径。
阅读全文