要求使用python语言编写一个遗传算法,对一个4*8的二维矩阵进行优化,矩阵内的值均在-1.3到1.5之间,实值编码,同时对矩阵进行DCT编码,压缩成2*4的dtc矩阵,对该矩阵进行优化,在适应度评估时将该矩阵逆变换成4*8的矩阵,目标函数是每一列的和分别等于45.2,46.4,47.6,48.8,50,51.2,52.4,53.6。请给出实现上述步骤的代码
时间: 2023-12-06 14:45:45 浏览: 76
Python算法题源代码-LeetCode(力扣)-搜索二维矩阵
以下是实现上述步骤的Python代码:
```python
import random
import numpy as np
from scipy.fftpack import dct, idct
# 定义遗传算法的参数
POP_SIZE = 100 # 种群大小
GENE_LENGTH = 32 # 基因长度
GENERATIONS = 200 # 迭代次数
MUTATION_RATE = 0.01 # 变异率
CROSSOVER_RATE = 0.6 # 交叉率
# 定义矩阵的参数
ROWS = 4
COLS = 8
MIN_VALUE = -1.3
MAX_VALUE = 1.5
# 定义DCT矩阵的参数
DCT_ROWS = 2
DCT_COLS = 4
# 定义目标函数的参数
TARGET_SUMS = [45.2, 46.4, 47.6, 48.8, 50, 51.2, 52.4, 53.6]
# 初始化种群
def init_population(pop_size, gene_length):
population = []
for i in range(pop_size):
genes = []
for j in range(gene_length):
gene = random.uniform(MIN_VALUE, MAX_VALUE)
genes.append(gene)
population.append(genes)
return population
# 计算适应度
def calculate_fitness(population):
fitness = []
for genes in population:
# 将基因解码为矩阵
matrix = np.array(genes).reshape((ROWS, COLS))
# 对矩阵进行DCT编码
dct_matrix = dct(matrix, axis=0, norm='ortho')
dct_matrix = dct(dct_matrix, axis=1, norm='ortho')
# 计算逆变换后的矩阵
idct_matrix = idct(dct_matrix, axis=1, norm='ortho')
idct_matrix = idct(idct_matrix, axis=0, norm='ortho')
# 计算每列的和
sums = np.sum(idct_matrix, axis=0)
# 计算适应度
fitness_value = 0
for i in range(len(TARGET_SUMS)):
fitness_value += abs(sums[i] - TARGET_SUMS[i])
fitness.append(1 / (fitness_value + 1))
return fitness
# 选择操作
def selection(population, fitness):
fitness_sum = sum(fitness)
probs = [f / fitness_sum for f in fitness]
selected = []
for i in range(len(population)):
r = random.uniform(0, 1)
j = 0
p_sum = probs[j]
while p_sum < r:
j += 1
p_sum += probs[j]
selected.append(population[j])
return selected
# 交叉操作
def crossover(parent1, parent2):
if random.uniform(0, 1) > CROSSOVER_RATE:
return parent1, parent2
else:
point = random.randint(1, GENE_LENGTH - 1)
child1 = parent1[:point] + parent2[point:]
child2 = parent2[:point] + parent1[point:]
return child1, child2
# 变异操作
def mutation(genes):
if random.uniform(0, 1) > MUTATION_RATE:
return genes
else:
point = random.randint(0, GENE_LENGTH - 1)
genes[point] = random.uniform(MIN_VALUE, MAX_VALUE)
return genes
# 遗传算法优化
def genetic_algorithm():
# 初始化种群
population = init_population(POP_SIZE, GENE_LENGTH)
for i in range(GENERATIONS):
# 计算适应度
fitness = calculate_fitness(population)
# 打印最优解
index = np.argmax(fitness)
print('Generation:', i+1, 'Best Fitness:', fitness[index], 'Best Solution:', population[index])
# 选择操作
selected = selection(population, fitness)
# 交叉操作
offspring = []
for j in range(0, POP_SIZE, 2):
child1, child2 = crossover(selected[j], selected[j+1])
offspring.append(mutation(child1))
offspring.append(mutation(child2))
# 替换操作
population = offspring
if __name__ == '__main__':
genetic_algorithm()
```
在这个代码中,我们首先定义了遗传算法的参数,包括种群大小、基因长度、迭代次数、变异率和交叉率。然后定义了矩阵的参数,包括行数、列数和取值范围。接着定义了DCT矩阵的参数,包括行数和列数。最后定义了目标函数的参数,即每列的和应该等于多少。
接下来,我们实现了遗传算法的各个操作。首先是初始化种群的函数`init_population()`,它用于生成随机的基因序列。然后是计算适应度的函数`calculate_fitness()`,它将基因解码为矩阵,并对矩阵进行DCT编码和逆变换,最终计算每列的和与目标值之间的差距,作为适应度。
接着是选择操作的函数`selection()`,它根据每个个体的适应度计算出其被选中的概率,并从中随机选择一些个体作为下一代的父代。然后是交叉操作的函数`crossover()`,它随机选择一个交叉点,将两个父代的基因序列分别从交叉点处切开,然后将前半段拼接成一个新的基因序列。最后是变异操作的函数`mutation()`,它随机选择一个基因位,将其替换成一个随机的值。
最后,我们实现了遗传算法的主函数`genetic_algorithm()`,它依次执行初始化种群、计算适应度、选择、交叉、变异和替换操作,并打印出每一代的最优解。
阅读全文