kd树python实现
时间: 2023-12-04 16:35:06 浏览: 78
KD树,也称K-Dimensional Tree,是一种二叉搜索树,它能够对K维空间中的数据进行快速检索。这里提供一个Python实现的示例代码:
```python
import numpy as np
class KDTree:
def __init__(self, X):
self.k = X.shape[1]
self.tree = self.build_tree(X)
class Node:
def __init__(self, data, dim, left, right):
self.data = data
self.dim = dim
self.left = left
self.right = right
def build_tree(self, X):
if X.shape[0] == 0:
return None
dim = np.argmax(np.var(X, axis=0))
sorted_idx = np.argsort(X[:, dim])
mid = X.shape[0] // 2
left = self.build_tree(X[sorted_idx[:mid]])
right = self.build_tree(X[sorted_idx[mid+1:]])
return KDTree.Node(X[sorted_idx[mid]], dim, left, right)
def search(self, x):
def helper(node, x, best_dist, best_node):
if node is None:
return best_node, best_dist
dist = np.sum((node.data - x) ** 2)
if dist < best_dist:
best_dist = dist
best_node = node
if x[node.dim] < node.data[node.dim]:
best_node, best_dist = helper(node.left, x, best_dist, best_node)
if x[node.dim] + np.sqrt(best_dist) > node.data[node.dim]:
best_node, best_dist = helper(node.right, x, best_dist, best_node)
else:
best_node, best_dist = helper(node.right, x, best_dist, best_node)
if x[node.dim] - np.sqrt(best_dist) < node.data[node.dim]:
best_node, best_dist = helper(node.left, x, best_dist, best_node)
return best_node, best_dist
return helper(self.tree, x, np.inf, None)
```
代码中的`KDTree`类实现了KD树的构建和搜索功能。在初始化时,传入数据`X`,并根据方差最大的维度进行划分,递归构建KD树。搜索时,从根节点开始递归地遍历左右子树,更新最近邻节点和距离。具体实现过程详见代码注释。
阅读全文