用dijkstra求从v1到各点的最短路

时间: 2024-06-07 09:05:38 浏览: 3
好的,这是一个关于最短路径算法的问题。Dijkstra算法是一种常见的单源最短路径算法,可以用来求解从一个起点v1到其他所有点的最短路径。 算法步骤如下: 1. 创建两个集合S和U,S表示已经求出最短路径的顶点集合,U表示未确定最短路径的顶点集合; 2. 把起点v1加入集合S中,把其他顶点加入集合U中; 3. 初始化距离数组dist,dist[i]表示v1到顶点i的最短距离,dist[v1]=0,dist[i]=INF(表示无穷大,即v1无法直接到达i); 4. 从集合U中选取dist值最小的顶点u,把u加入集合S中; 5. 对于集合U中的每个顶点v,如果存在边(u,v),则更新dist[v]的值,即dist[v]=min{dist[v],dist[u]+w(u,v)},其中w(u,v)表示边(u,v)的权值; 6. 重复步骤4和5,直到集合U为空。 最后,dist数组中存储的就是v1到所有顶点的最短距离。 希望这个回答能够帮到你!
相关问题

有环图可以用Dijkstra求最短路吗

可以,Dijkstra算法可以用于求解图中带权重的最短路径问题,包括有环图。然而,有环图中存在负权边时,Dijkstra算法就无法正确地计算最短路径了。这是因为Dijkstra算法的核心思想是每次选择当前距离起点最近的节点来扩展,而在有环图中,存在负权边可能导致算法陷入循环。若要处理有环图的最短路径问题,可以使用其他算法,如Bellman-Ford算法或者Floyd-Warshall算法。

dijkstra求最短路c++

Dijkstra算法是求单源最短路径的经典算法,其基本思想是通过逐步扩展生成最短路径集合,最终得到源点到所有其它点的最短路径。 以下是C++实现: ```c++ #include <iostream> #include <vector> #include <queue> #include <cstring> using namespace std; const int INF = 0x3f3f3f3f; // 定义正无穷 struct Edge { int to, w; Edge(int to, int w) : to(to), w(w) {} }; vector<Edge> G[100010]; // 邻接表存图 int dist[100010]; // 存储最短路径长度 bool vis[100010]; // 标记是否已经确定最短路径 void dijkstra(int s) { memset(dist, INF, sizeof(dist)); // 初始化距离为正无穷 memset(vis, false, sizeof(vis)); // 初始化标记为未确定最短路径 dist[s] = 0; // 源点到自己的距离为0 priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; // 小根堆 q.push(make_pair(0, s)); // 将源点入队 while(!q.empty()) { int u = q.top().second; // 取出当前距离最小的点 q.pop(); if(vis[u]) continue; // 如果已经确定最短路径,直接跳过 vis[u] = true; // 标记为已确定最短路径 for(auto e : G[u]) { // 遍历所有相邻的点 int v = e.to; int w = e.w; if(dist[v] > dist[u] + w) { // 如果当前路径更优 dist[v] = dist[u] + w; // 更新最短路径距离 q.push(make_pair(dist[v], v)); // 将该点加入小根堆 } } } } int main() { int n, m, s; cin >> n >> m >> s; for(int i = 0; i < m; i++) { int u, v, w; cin >> u >> v >> w; G[u].push_back(Edge(v, w)); } dijkstra(s); for(int i = 1; i <= n; i++) { if(dist[i] == INF) cout << "INF" << endl; // 如果不连通,输出INF else cout << dist[i] << endl; } return 0; } ``` 输入格式:第一行输入三个整数n,m,s,表示图的点数、边数和源点编号。接下来m行每行三个整数u,v,w,表示一条从u到v的有向边,边权为w。 输出格式:输出n行,每行一个整数,表示源点到每个点的最短路径长度。若不连通,则输出INF。

相关推荐

最新推荐

recommend-type

Dijkstra标号方法求最短路问题

Dijkstra 标号方法求最短路问题。求出发点到各个点的最短路,能够把同时最小的多个路径求出来
recommend-type

python实现dijkstra最短路由算法

它由荷兰计算机科学家艾兹格·迪科斯彻在1959年提出,主要用于解决从一个顶点到其他所有顶点的最短路径问题。在Python中实现Dijkstra算法,我们可以按照以下步骤进行: 1. **初始化**: - 首先,我们需要一个表示...
recommend-type

C++用Dijkstra(迪杰斯特拉)算法求最短路径

Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。...下面这篇文章就给大家介绍关于C++用Dijkstra算法(迪杰斯特拉算法)求最短路径的方法,下面来一起看看吧。
recommend-type

C++求所有顶点之间的最短路径(用Dijkstra算法)

C++求所有顶点之间的最短路径(用Dijkstra算法) 以下是从给定文件信息中生成的相关知识点: 1. Dijkstra算法的定义和原理: Dijkstra算法是一种常用的最短路径算法,用于计算图中从一个顶点到所有其他顶点的最短...
recommend-type

matlab Dijkstra最短路算法通用程序

图论基础,matlab程序。Dijkstra最短路算法Matlab程序用于求从起始点s到其它各点的最短路
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。