解释input_train=input(:,idx(1:t)); input_train=input_train+0.3*rands(3,540); input_test=input(:,idx(t+1:end)); output_train=output(:,idx(1:t)); output_test=output(:,idx(t+1:end));
时间: 2023-06-06 08:08:21 浏览: 145
这是一个关于数据处理的问题。首先,将输入数据中的前t个样本提取出来,赋值给input_train。然后,对input_train进行随机扰动,即将其中的一部分值加上一个0.3倍的随机数。接着,将剩余的样本提取出来,赋值给input_train。最后,将所有的标签数据中的前t个样本和剩余的样本分别提取出来,赋值给output_train和output_test。
相关问题
def load_data(args): dataset = AFADDataset(args['DATASET'], args['ANNOTATION'], args['INPUT_SIZE'], True) indices = list(range(len(dataset))) np.random.shuffle(indices) val_size = int(args['VAL_RATIO'] * len(dataset)) val_idx, train_idx = indices[: val_size], indices[val_size:] train_sampler = SubsetRandomSampler(train_idx) val_sampler = SubsetRandomSampler(val_idx) train_loader = DataLoader(dataset, batch_size=args['BS'], sampler=train_sampler, num_workers=args['NW'], pin_memory=True) val_loader = DataLoader(dataset, batch_size=args['BS'], sampler=val_sampler, num_workers=args['NW'], pin_memory=True) data_loaders = {'train': train_loader, 'val': val_loader} return data_loaders用了哪些函数
这段代码用了以下函数:
- `AFADDataset`: 自定义的数据集类,用于读取和处理数据集。
- `list`, `range`: Python 的内置函数,用于生成索引列表。
- `np.random.shuffle`: NumPy 的函数,用于打乱索引列表的顺序。
- `int`: Python 的内置函数,用于将浮点数转换为整数。
- `SubsetRandomSampler`: PyTorch 的采样器类,用于指定数据集的子集。
- `DataLoader`: PyTorch 的数据加载器类,用于并行加载数据。
- `{'train': train_loader, 'val': val_loader}`: Python 的字典数据类型,用于存储训练集和验证集的数据加载器。
clc clear load fisheriris; X = meas(:,3:4); Y = species; cv = cvpartition(Y,'holdout',0.3); % 30% 的数据用于测试 Y_train = grp2idx(Y_train); Y_test = grp2idx(Y_test); X_train = X(cv.training,:); Y_train = Y(cv.training,:); X_test = X(cv.test,:); Y_test = Y(cv.test,:); svm_model = fitcecoc(X_train, Y_train); Y_pred = predict(svm_model,X_test); accuracy = sum(Y_pred==Y_test)/length(Y_test); 未定义函数或变量 'Y_train'。
这是因为在上面的代码中,Y_train 还未被定义。你可以按照下面的代码进行修改:
```matlab
clc
clear
load fisheriris;
X = meas(:,3:4);
Y = species;
cv = cvpartition(Y,'holdout',0.3); % 30% 的数据用于测试
Y_train = grp2idx(Y(cv.training));
Y_test = grp2idx(Y(cv.test));
X_train = X(cv.training,:);
X_test = X(cv.test,:);
svm_model = fitcecoc(X_train, Y_train);
Y_pred = predict(svm_model,X_test);
accuracy = sum(Y_pred==Y_test)/length(Y_test);
```
这样就可以顺利运行了。
阅读全文