Macro Precision
Macro Precision(宏精度)是指在分类问题中,通过将所有类别的分类正确率取平均值来计算模型的整体性能指标。它是一种比较直观的评价指标,可以用来评估模型在多个类别上的表现。与之相对的是微精度(Micro Precision),它是通过计算每个类别的真阳性和假阳性数量来计算模型的整体性能指标。两种精度指标都有其适用的场景,需要根据具体情况进行选择。
Accuracy Macro Precision
Accuracy、Macro Precision都是评估分类模型性能的指标,具体介绍如下:
Accuracy(准确率):是指分类正确的样本数与总样本数之比,即: $$Accuracy=\frac{TP+TN}{TP+TN+FP+FN}$$ 其中,TP(True Positive)表示真正例,即实际为正例且被预测为正例的样本数;TN(True Negative)表示真反例,即实际为反例且被预测为反例的样本数;FP(False Positive)表示假正例,即实际为反例但被预测为正例的样本数;FN(False Negative)表示假反例,即实际为正例但被预测为反例的样本数。
Macro Precision(宏平均精度):是指将每个类别的精度求平均得到的指标。对于一个多分类问题,我们可以计算每个类别的精度,然后将这些精度相加取平均得到宏平均精度。它可以通过以下公式计算: $$Macro\ Precision=\frac{1}{n}\sum_{i=1}^{n}\frac{TP_i}{TP_i+FP_i}$$ 其中,n表示类别数,$TP_i$表示第i个类别的真正例数,$FP_i$表示第i个类别的假正例数。
accuracy=accuracy_score(Ytest,y_pred) recall=recall_score(Ytest,y_pred,average='macro') precision=precision_score(Ytest,y_pred,average='macro') f1=f1_score(Ytest,y_pred,average='macro') print(accuracy,recall,precision,f1)
你计算了分类器的准确率(accuracy)、召回率(recall)、精确率(precision)和 F1 分数(f1)。
请注意,你使用了 accuracy_score
、recall_score
、precision_score
和 f1_score
函数来计算这些指标。这些函数需要传入真实标签 Ytest
和预测标签 y_pred
。
最后,你使用 print
函数将这些指标打印出来。
相关推荐
















