for epoch in range(1, num_epochs + 1): train(model, device, train_loader, optimizer, epoch) test_loss, test_acc, pred, target = test(model, device, test_loader) Recall = recall_score(target, pred, average='macro') Precision = precision_score(target, pred, average='macro') F1_score = f1_score(target, pred, average='macro') kappa_score=cohen_kappa_score(target, pred) test_Loss_list.append(test_loss) test_Accuracy_list.append(test_acc) Recall_list.append(Recall) Precision_list.append(Precision) F1_score_list.append(F1_score) kappa_list.append(kappa_score) Loss.append(test_Loss_list) Accuracy.append(test_Accuracy_list) Recall_test.append(Recall_list) Precision_test.append(Precision_list) F1_score_test.append(F1_score_list) kappa_test.append(kappa_list)
时间: 2024-04-11 17:29:20 浏览: 198
IG_epoch_estimate
这段代码是一个训练模型的循环,它的目的是在每个epoch中执行训练和测试,并记录相关的指标值。在每个epoch中,模型会通过`train`函数进行训练,然后通过`test`函数计算测试集上的损失、准确率、召回率、精确率、F1分数和Kappa分数。这些指标值会被保存到相应的列表中。最后,这些列表会被保存到`Loss`、`Accuracy`、`Recall_test`、`Precision_test`、`F1_score_test`和`kappa_test`中。
请问还有其他问题吗?
阅读全文