arduino怎么用PID

时间: 2023-11-13 13:04:02 浏览: 36
在Arduino中使用PID控制器的步骤如下: 1. 首先,在你的Arduino项目中包含PID库。你可以从Arduino官方网站上下载并安装这个库。 2. 定义和初始化控制器所需的变量,包括比例常数(Kp),积分常数(Ki)和微分常数(Kd)。这些常数将会影响PID控制器的性能。 3. 在循环函数内部,获取当前时间并计算经过的时间。 4. 计算误差,即将测量值与设定值之间的差异。 5. 计算误差的累积量,即将误差乘以经过的时间。 6. 计算误差的变化率,即将当前误差减去上一次误差,并除以经过的时间。 7. 将上述三个项加权求和,得到PID控制器的输出。 8. 使用PID控制器的输出来控制你的设备或系统。这可以是通过PWM信号来控制电机的速度,或者通过调节其他硬件组件来实现你的目标。 需要注意的是,PID控制器的性能可能会受到所选择的常数值的影响。因此,你可能需要进行试验和调整,以找到适合你的应用的最佳常数值。 希望这些步骤可以帮助你在Arduino项目中成功应用PID控制器。
相关问题

用arduino实现PID

PID(比例、积分、微分)控制是一种广泛应用于自动控制系统中的控制算法。在 Arduino 上实现 PID 控制可以通过以下步骤: 1. 定义变量和常量:定义输入、输出和目标变量,以及比例、积分和微分常量。 ```c++ double input, output, setpoint; double Kp = 1, Ki = 0.1, Kd = 0.1; ``` 2. 初始化变量和控制器:将输入、输出和目标变量初始化为零,并初始化 PID 控制器。 ```c++ PID pid(&input, &output, &setpoint, Kp, Ki, Kd, DIRECT); ``` 3. 设置控制器参数:设置控制器的采样时间、输出范围、控制器模式和反向控制模式。 ```c++ pid.SetSampleTime(1000); // 控制器采样时间 pid.SetOutputLimits(0, 255); // 输出范围 pid.SetMode(AUTOMATIC); // 控制器模式 pid.SetControllerDirection(DIRECT); // 反向控制模式 ``` 4. 读取输入变量:从传感器或其他输入设备读取输入变量。 ```c++ input = analogRead(A0); ``` 5. 计算输出变量:通过调用 PID 控制器的 Compute() 函数计算输出变量。 ```c++ pid.Compute(); ``` 6. 输出控制信号:将输出变量转换为控制信号,例如将 PWM 信号发送到电机控制器。 ```c++ analogWrite(9, output); ``` 完整的示例代码如下: ```c++ #include <PID_v1.h> double input, output, setpoint; double Kp = 1, Ki = 0.1, Kd = 0.1; PID pid(&input, &output, &setpoint, Kp, Ki, Kd, DIRECT); void setup() { pid.SetSampleTime(1000); pid.SetOutputLimits(0, 255); pid.SetMode(AUTOMATIC); pid.SetControllerDirection(DIRECT); } void loop() { input = analogRead(A0); setpoint = 512; pid.Compute(); analogWrite(9, output); delay(1000); } ```

arduino模糊pid

Arduino模糊PID指的是使用基于模糊控制理论的PID控制方法。传统的PID控制通常是基于精确数学运算和线性响应模型的,但在实际场景中,系统通常是非线性和带有噪声的,这就导致传统PID控制的效果不佳。 而基于模糊控制的PID控制,其核心思想是利用模糊数学理论中的“模糊集合”概念,将输入、输出、误差等主要变量的模糊集合进行模糊化,从而得到不同程度的控制量,最终求出控制信号。这种方法具有较强的适应性和鲁棒性,广泛应用于汽车、机器人、电力等众多行业。 在Arduino中,模糊PID可以使用模糊逻辑控制器(FLC)来实现。该控制器具有提供多种模糊推理和输出方式、易于编程和调试等优点,可以轻松地实现模糊PID控制,也适用于不同的传感器和执行机构。同时,通过与Arduino的结合,可以方便地将模糊PID应用于各种电子设备的控制,实现更加稳定、高效的控制效果。

相关推荐

最新推荐

recommend-type

PID库(Arduino PID Library)使用说明

Arduino PID Library - Version 1.2.1 by Brett Beauregard &lt;br3ttb@gmail.com&gt; brettbeauregard.com This Library is licensed under the MIT License
recommend-type

Arduino pwm调光

本装置利用单片机采样精密电位器的电压值,利用PID算法进行稳定过程控制,利用单片机输出PWM控制风机转速实现风板的风量控制,从而达到控制风板运动来完成规定动作的要求;利用单片机动按键和液晶屏进行角度控制的...
recommend-type

前18大旋转修整器企业占据全球87%的市场份额.docx

前18大旋转修整器企业占据全球87%的市场份额
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

利用Python发现一组数据符合非中心t分布并获得了拟合参数dfn,dfc,loc,scale,如何利用scipy库中的stats模块求这组数据的数学期望和方差

可以使用scipy库中的stats模块的ncx2和norm方法来计算非中心t分布的数学期望和方差。 对于非中心t分布,其数学期望为loc,方差为(scale^2)*(dfc/(dfc-2)),其中dfc为自由度,scale为标准差。 代码示例: ``` python from scipy.stats import ncx2, norm # 假设数据符合非中心t分布 dfn = 5 dfc = 10 loc = 2 scale = 1.5 # 计算数学期望 mean = loc print("数学期望:", mean) # 计算方差 var = (scale**2) * (dfc /
recommend-type

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这