求一个尺寸为2*2的矩阵函数f(x,y)的离散傅里叶变换
时间: 2024-03-25 12:37:31 浏览: 75
离散傅里叶变换
好的,函数f(x,y)在尺寸为2x2的矩阵上可以表示为:
```
f(x,y) = [ f(0,0) f(0,1) ]
[ f(1,0) f(1,1) ]
```
其离散傅里叶变换(Discrete Fourier Transform, DFT)可以表示为:
```
F(u,v) = ∑∑ f(x,y) * e^(-2πi(ux+vy)/N)
x=0 y=0
```
其中,N表示矩阵的尺寸,u和v为频率变量,e为自然对数的底数。将上式带入矩阵f(x,y)的值,得到:
```
F(u,v) = f(0,0)*e^(-2πiu*0/N)*e^(-2πiv*0/N) + f(0,1)*e^(-2πiu*0/N)*e^(-2πiv*1/N) + f(1,0)*e^(-2πiu*1/N)*e^(-2πiv*0/N) + f(1,1)*e^(-2πiu*1/N)*e^(-2πiv*1/N)
```
化简上式,得到:
```
F(u,v) = f(0,0) + f(0,1)*e^(-2πiv/N) + f(1,0)*e^(-2πiu/N) + f(1,1)*e^(-2πiu/N)*e^(-2πiv/N)
```
这就是函数f(x,y)的离散傅里叶变换。
阅读全文